hts/packages/isdk/core/generate-object/stream-object.ts

273 lines
8.3 KiB
TypeScript

import {
LanguageModelV1,
LanguageModelV1CallOptions,
LanguageModelV1CallWarning,
LanguageModelV1StreamPart,
} from '@ai-sdk/provider';
import { z } from 'zod';
import { CallSettings } from '../prompt/call-settings';
import { convertToLanguageModelPrompt } from '../prompt/convert-to-language-model-prompt';
import { getValidatedPrompt } from '../prompt/get-validated-prompt';
import { prepareCallSettings } from '../prompt/prepare-call-settings';
import { Prompt } from '../prompt/prompt';
import {
AsyncIterableStream,
createAsyncIterableStream,
} from '../util/async-iterable-stream';
import { convertZodToJSONSchema } from '../util/convert-zod-to-json-schema';
import { DeepPartial } from '../util/deep-partial';
import { isDeepEqualData } from '../util/is-deep-equal-data';
import { parsePartialJson } from '../util/parse-partial-json';
import { retryWithExponentialBackoff } from '../util/retry-with-exponential-backoff';
import { injectJsonSchemaIntoSystem } from './inject-json-schema-into-system';
/**
Generate a structured, typed object for a given prompt and schema using a language model.
This function streams the output. If you do not want to stream the output, use `experimental_generateObject` instead.
@param model - The language model to use.
@param schema - The schema of the object that the model should generate.
@param mode - The mode to use for object generation. Not all models support all modes. Defaults to 'auto'.
@param system - A system message that will be part of the prompt.
@param prompt - A simple text prompt. You can either use `prompt` or `messages` but not both.
@param messages - A list of messages. You can either use `prompt` or `messages` but not both.
@param maxTokens - Maximum number of tokens to generate.
@param temperature - Temperature setting.
This is a number between 0 (almost no randomness) and 1 (very random).
It is recommended to set either `temperature` or `topP`, but not both.
@param topP - Nucleus sampling. This is a number between 0 and 1.
E.g. 0.1 would mean that only tokens with the top 10% probability mass are considered.
It is recommended to set either `temperature` or `topP`, but not both.
@param presencePenalty - Presence penalty setting.
It affects the likelihood of the model to repeat information that is already in the prompt.
The presence penalty is a number between -1 (increase repetition) and 1 (maximum penalty, decrease repetition).
0 means no penalty.
@param frequencyPenalty - Frequency penalty setting.
It affects the likelihood of the model to repeatedly use the same words or phrases.
The frequency penalty is a number between -1 (increase repetition) and 1 (maximum penalty, decrease repetition).
0 means no penalty.
@param seed - The seed (integer) to use for random sampling.
If set and supported by the model, calls will generate deterministic results.
@param maxRetries - Maximum number of retries. Set to 0 to disable retries. Default: 2.
@param abortSignal - An optional abort signal that can be used to cancel the call.
@return
A result object for accessing the partial object stream and additional information.
*/
export async function experimental_streamObject<T>({
model,
schema,
mode,
system,
prompt,
messages,
maxRetries,
abortSignal,
...settings
}: CallSettings &
Prompt & {
/**
The language model to use.
*/
model: LanguageModelV1;
/**
The schema of the object that the model should generate.
*/
schema: z.Schema<T>;
/**
The mode to use for object generation. Not all models support all modes.
Default and recommended: 'auto' (best mode for the model).
*/
mode?: 'auto' | 'json' | 'tool' | 'grammar';
}): Promise<StreamObjectResult<T>> {
const retry = retryWithExponentialBackoff({ maxRetries });
const jsonSchema = convertZodToJSONSchema(schema);
// use the default provider mode when the mode is set to 'auto' or unspecified
if (mode === 'auto' || mode == null) {
mode = model.defaultObjectGenerationMode;
}
let callOptions: LanguageModelV1CallOptions;
let transformer: Transformer<LanguageModelV1StreamPart>;
switch (mode) {
case 'json': {
const validatedPrompt = getValidatedPrompt({
system: injectJsonSchemaIntoSystem({ system, schema: jsonSchema }),
prompt,
messages,
});
callOptions = {
mode: { type: 'object-json' },
...prepareCallSettings(settings),
inputFormat: validatedPrompt.type,
prompt: convertToLanguageModelPrompt(validatedPrompt),
abortSignal,
};
transformer = {
transform: (chunk, controller) => {
switch (chunk.type) {
case 'text-delta':
controller.enqueue(chunk.textDelta);
break;
case 'error':
controller.enqueue(chunk);
break;
}
},
};
break;
}
case 'grammar': {
const validatedPrompt = getValidatedPrompt({
system: injectJsonSchemaIntoSystem({ system, schema: jsonSchema }),
prompt,
messages,
});
callOptions = {
mode: { type: 'object-grammar', schema: jsonSchema },
...settings,
inputFormat: validatedPrompt.type,
prompt: convertToLanguageModelPrompt(validatedPrompt),
abortSignal,
};
transformer = {
transform: (chunk, controller) => {
switch (chunk.type) {
case 'text-delta':
controller.enqueue(chunk.textDelta);
break;
case 'error':
controller.enqueue(chunk);
break;
}
},
};
break;
}
case 'tool': {
const validatedPrompt = getValidatedPrompt({
system,
prompt,
messages,
});
callOptions = {
mode: {
type: 'object-tool',
tool: {
type: 'function',
name: 'json',
description: 'Respond with a JSON object.',
parameters: jsonSchema,
},
},
...settings,
inputFormat: validatedPrompt.type,
prompt: convertToLanguageModelPrompt(validatedPrompt),
abortSignal,
};
transformer = {
transform(chunk, controller) {
switch (chunk.type) {
case 'tool-call-delta':
controller.enqueue(chunk.argsTextDelta);
break;
case 'error':
controller.enqueue(chunk);
break;
}
},
};
break;
}
case undefined: {
throw new Error('Model does not have a default object generation mode.');
}
default: {
const _exhaustiveCheck: never = mode;
throw new Error(`Unsupported mode: ${_exhaustiveCheck}`);
}
}
const result = await retry(() => model.doStream(callOptions));
return new StreamObjectResult({
stream: result.stream.pipeThrough(new TransformStream(transformer)),
warnings: result.warnings,
});
}
/**
The result of a `streamObject` call that contains the partial object stream and additional information.
*/
export class StreamObjectResult<T> {
private readonly originalStream: ReadableStream<string | ErrorStreamPart>;
/**
Warnings from the model provider (e.g. unsupported settings)
*/
readonly warnings: LanguageModelV1CallWarning[] | undefined;
constructor({
stream,
warnings,
}: {
stream: ReadableStream<string | ErrorStreamPart>;
warnings: LanguageModelV1CallWarning[] | undefined;
}) {
this.originalStream = stream;
this.warnings = warnings;
}
get partialObjectStream(): AsyncIterableStream<DeepPartial<T>> {
let accumulatedText = '';
let latestObject: DeepPartial<T> | undefined = undefined;
return createAsyncIterableStream(this.originalStream, {
transform(chunk, controller) {
if (typeof chunk === 'string') {
accumulatedText += chunk;
const currentObject = parsePartialJson(
accumulatedText,
) as DeepPartial<T>;
if (!isDeepEqualData(latestObject, currentObject)) {
latestObject = currentObject;
controller.enqueue(currentObject);
}
}
if (typeof chunk === 'object' && chunk.type === 'error') {
throw chunk.error;
}
},
});
}
}
export type ErrorStreamPart = { type: 'error'; error: unknown };