## Download data ``` wget https://raw.githubusercontent.com/openai/grade-school-math/master/grade_school_math/data/test.jsonl ``` ## Run benchmark NOTE: This is an implementation for throughput/latency benchmark purposes. The prompts are not tuned to achieve good accuracy on the GSM-8K tasks. ### Benchmark sglang ``` python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 ``` ``` python3 bench_sglang.py --num-questions 32 python3 bench_sglang.py --num-questions 16 --parallel 1 ``` ### Benchmark vllm ``` python3 -m vllm.entrypoints.api_server --tokenizer-mode auto --model meta-llama/Llama-2-7b-chat-hf --disable-log-requests --port 21000 ``` ``` python3 bench_other.py --num-questions 32 --backend vllm ``` ### Benchmark lightllm ``` # A10G python -m lightllm.server.api_server --tokenizer_mode auto --model_dir ~/model_weights/llama-2-7b-chat-hf --max_total_token_num 16000 --port 22000 ``` ``` python3 bench_other.py --num-questions 32 --backend lightllm ``` ### Benchmark guidance ``` python3 bench_other.py --num-questions 8 --backend guidance --parallel 1 --n-ctx 4096 --model-path path/to/gguf ``` ### Benchmark lmql ``` python3 bench_other.py --num-questions 8 --backend lmql --parallel 1 ```