import argparse import copy import itertools import torch import triton from sgl_kernel import int8_scaled_mm from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm def to_int8(tensor: torch.Tensor) -> torch.Tensor: return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8) WEIGHT_SHAPES = { "meta-llama/Llama-3.1-8B-Instruct": [ ([4096, 6144], 1), ([4096, 4096], 0), ([4096, 28672], 1), ([14336, 4096], 0), ], "meta-llama/Llama-3.3-70B-Instruct": [ ([8192, 10240], 1), ([8192, 8192], 0), ([8192, 57344], 1), ([28672, 8192], 0), ], "mistralai/Mistral-Large-Instruct-2407": [ ([12288, 14336], 1), ([12288, 12288], 0), ([12288, 57344], 1), ([28672, 12288], 0), ], "Qwen/Qwen2.5-7B-Instruct": [ ([3584, 4608], 1), ([3584, 3584], 0), ([3584, 37888], 1), ([18944, 3584], 0), ], "Qwen/Qwen2.5-32B-Instruct": [ ([5120, 7168], 1), ([5120, 5120], 0), ([5120, 55296], 1), ([27648, 5120], 0), ], "Qwen/Qwen2.5-72B-Instruct": [ ([8192, 10240], 1), ([8192, 8192], 0), ([8192, 59136], 1), ([29568, 8192], 0), ], "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": [ ([2048, 3072], 1), ([2048, 4096], 1), ([2048, 2048], 0), ([2048, 576], 0), ([2048, 21888], 1), ([10944, 2048], 0), ([2048, 2816], 1), ([1408, 2048], 0), ], } @triton.testing.perf_report( triton.testing.Benchmark( x_names=["batch_size"], x_vals=[1, 16, 32, 64, 128, 256, 512, 1024, 2048], x_log=False, line_arg="provider", line_vals=["vllm", "sgl-kernel"], line_names=["vllm int8 gemm", "sgl-kernel int8 gemm"], styles=[("blue", "-"), ("orange", "-")], ylabel="GB/s", plot_name="int8 scaled matmul", args={}, ) ) def benchmark(batch_size, provider, N, K): M = batch_size a = to_int8(torch.randn((M, K), device="cuda") * 5) b = to_int8(torch.randn((N, K), device="cuda").t() * 5) scale_a = torch.randn((M,), device="cuda", dtype=torch.float32) scale_b = torch.randn((N,), device="cuda", dtype=torch.float32) bias = torch.randn((N,), device="cuda", dtype=torch.float16) quantiles = [0.5, 0.2, 0.8] if provider == "sgl-kernel": ms, min_ms, max_ms = triton.testing.do_bench( lambda: int8_scaled_mm(a, b, scale_a, scale_b, torch.float16, bias), quantiles=quantiles, ) if provider == "vllm": ms, min_ms, max_ms = triton.testing.do_bench( lambda: vllm_scaled_mm(a, b, scale_a, scale_b, torch.float16, bias), quantiles=quantiles, ) gbps = ( lambda ms: ( (2 * M * N * K - M * N) * a.element_size() + (3 * M * N) * scale_a.element_size() ) * 1e-9 / (ms * 1e-3) ) return gbps(ms), gbps(max_ms), gbps(min_ms) def prepare_shapes(args): KN_model_names = [] models_tps = list(itertools.product(args.models, args.tp_sizes)) for model, tp_size in models_tps: assert model in WEIGHT_SHAPES for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model]): KN[tp_split_dim] = KN[tp_split_dim] // tp_size KN.append(model) KN_model_names.append(KN) return KN_model_names if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--models", nargs="+", type=str, default=["meta-llama/Llama-3.1-8B-Instruct"], help="List of models to benchmark", ) parser.add_argument( "--tp-sizes", nargs="+", type=int, default=[1], help="List of tensor parallel sizes", ) args = parser.parse_args() KN_model_names = prepare_shapes(args) for K, N, model_name in KN_model_names: print(f"{model_name} N={N} K={K}: ") benchmark.run( print_data=True, show_plots=True, save_path="bench_int8_res", N=N, K=K ) print("Benchmark finished!")