/* * Copyright (c) 2024 by FlashInfer team. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "pytorch_extension_utils.h" using namespace flashinfer; __device__ __forceinline__ float silu(const float& val) { return val / (1.0f + __expf(-val)); } __device__ __forceinline__ float gelu(const float& val) { constexpr float kAlpha = M_SQRT1_2; return val * 0.5f * (1.0f + ::erf(val * kAlpha)); } __device__ __forceinline__ float gelu_tanh(const float& val) { const float cdf = 0.5f * (1.0f + math::tanh((0.7978845608028654f * (val + 0.044715f * val * val * val)))); return val * cdf; } void silu_and_mul(at::Tensor& out, at::Tensor& input, int64_t cuda_stream) { int d = input.size(-1) / 2; int64_t num_tokens = input.numel() / input.size(-1); dim3 grid(num_tokens); cudaStream_t stream = reinterpret_cast(cuda_stream); DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(input.scalar_type(), c_type, [&] { uint32_t vec_size = 16 / sizeof(c_type); dim3 block(std::min(d / vec_size, 1024U)); flashinfer::activation::act_and_mul_kernel <<>>(static_cast(out.data_ptr()), static_cast(input.data_ptr()), d); return true; }); } void gelu_tanh_and_mul(at::Tensor& out, at::Tensor& input, int64_t cuda_stream) { int d = input.size(-1) / 2; int64_t num_tokens = input.numel() / input.size(-1); dim3 grid(num_tokens); cudaStream_t stream = reinterpret_cast(cuda_stream); DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(input.scalar_type(), c_type, [&] { uint32_t vec_size = 16 / sizeof(c_type); dim3 block(std::min(d / vec_size, 1024U)); flashinfer::activation::act_and_mul_kernel <<>>(static_cast(out.data_ptr()), static_cast(input.data_ptr()), d); return true; }); } void gelu_and_mul(at::Tensor& out, at::Tensor& input, int64_t cuda_stream) { int d = input.size(-1) / 2; int64_t num_tokens = input.numel() / input.size(-1); dim3 grid(num_tokens); cudaStream_t stream = reinterpret_cast(cuda_stream); DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(input.scalar_type(), c_type, [&] { uint32_t vec_size = 16 / sizeof(c_type); dim3 block(std::min(d / vec_size, 1024U)); flashinfer::activation::act_and_mul_kernel <<>>(static_cast(out.data_ptr()), static_cast(input.data_ptr()), d); return true; }); }