chatai/sglang/sgl-kernel/python/sgl_kernel/sampling.py

211 lines
6.4 KiB
Python

from typing import Optional, Tuple, Union
import torch
from sgl_kernel.utils import _to_tensor_scalar_tuple, get_cuda_stream
def _top_k_renorm_probs_internal(
probs: torch.Tensor,
maybe_top_k_arr: Optional[torch.Tensor],
top_k_val: int,
) -> torch.Tensor:
probs = probs.float()
maybe_top_k_arr = maybe_top_k_arr.int() if maybe_top_k_arr is not None else None
renorm_probs = torch.empty_like(probs)
torch.ops.sgl_kernel.top_k_renorm_probs.default(
probs,
renorm_probs,
maybe_top_k_arr,
top_k_val,
get_cuda_stream(),
)
return renorm_probs
def top_k_renorm_probs(
probs: torch.Tensor,
top_k: Union[torch.Tensor, int],
) -> torch.Tensor:
return _top_k_renorm_probs_internal(probs, *_to_tensor_scalar_tuple(top_k))
top_k_renorm_prob = top_k_renorm_probs
def _top_p_renorm_probs_internal(
probs: torch.Tensor,
maybe_top_p_arr: Optional[torch.Tensor],
top_p_val: float,
) -> torch.Tensor:
probs = probs.float()
maybe_top_p_arr = maybe_top_p_arr.float() if maybe_top_p_arr is not None else None
renorm_probs = torch.empty_like(probs)
torch.ops.sgl_kernel.top_p_renorm_probs.default(
probs,
renorm_probs,
maybe_top_p_arr,
top_p_val,
get_cuda_stream(),
)
return renorm_probs
def top_p_renorm_probs(
probs: torch.Tensor,
top_p: Union[torch.Tensor, float],
) -> torch.Tensor:
return _top_p_renorm_probs_internal(probs, *_to_tensor_scalar_tuple(top_p))
top_p_renorm_prob = top_p_renorm_probs
def _top_p_sampling_from_probs_internal(
probs: torch.Tensor,
uniform_samples: torch.Tensor,
maybe_top_p_arr: Optional[torch.Tensor],
top_p_val: float,
deterministic: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
with probs.device as device:
probs = probs.float()
uniform_samples = uniform_samples.float()
maybe_top_p_arr = (
maybe_top_p_arr.float() if maybe_top_p_arr is not None else None
)
samples = torch.empty(probs.size(0), dtype=torch.int32, device=device)
success = torch.empty(probs.size(0), dtype=torch.bool, device=device)
torch.ops.sgl_kernel.top_p_sampling_from_probs.default(
probs,
uniform_samples,
samples,
success,
maybe_top_p_arr,
top_p_val,
deterministic,
get_cuda_stream(),
)
return samples, success
def top_p_sampling_from_probs(
probs: torch.Tensor,
uniform_samples: torch.Tensor,
top_p: Union[torch.Tensor, float],
deterministic: bool = True,
check_nan: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
if check_nan:
if torch.any(torch.isnan(probs)):
raise ValueError("Input probs contains NaN.")
return _top_p_sampling_from_probs_internal(
probs, uniform_samples, *_to_tensor_scalar_tuple(top_p), deterministic
)
def _top_k_top_p_sampling_from_probs_internal(
probs: torch.Tensor,
uniform_samples: torch.Tensor,
maybe_top_k_arr: Optional[torch.Tensor],
top_k_val: int,
maybe_top_p_arr: Optional[torch.Tensor],
top_p_val: float,
deterministic: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
with probs.device as device:
probs = probs.float()
uniform_samples = uniform_samples.float()
maybe_top_k_arr = maybe_top_k_arr.int() if maybe_top_k_arr is not None else None
maybe_top_p_arr = (
maybe_top_p_arr.float() if maybe_top_p_arr is not None else None
)
samples = torch.empty(probs.size(0), dtype=torch.int32, device=device)
success = torch.empty(probs.size(0), dtype=torch.bool, device=device)
torch.ops.sgl_kernel.top_k_top_p_sampling_from_probs.default(
probs,
uniform_samples,
samples,
success,
maybe_top_k_arr,
top_k_val,
maybe_top_p_arr,
top_p_val,
deterministic,
get_cuda_stream(),
)
return samples, success
def top_k_top_p_sampling_from_probs(
probs: torch.Tensor,
uniform_samples: torch.Tensor,
top_k: Union[torch.Tensor, int],
top_p: Union[torch.Tensor, float],
filter_apply_order: str = "top_k_first",
deterministic: bool = True,
check_nan: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
if filter_apply_order == "top_k_first":
renorm_probs = top_k_renorm_probs(probs, top_k)
return top_p_sampling_from_probs(
renorm_probs, uniform_samples, top_p, deterministic, check_nan=check_nan
)
elif filter_apply_order == "joint":
if check_nan:
if torch.any(torch.isnan(probs)):
raise ValueError("Input probs contains NaN.")
return _top_k_top_p_sampling_from_probs_internal(
probs,
uniform_samples,
*_to_tensor_scalar_tuple(top_k),
*_to_tensor_scalar_tuple(top_p),
deterministic,
)
else:
raise ValueError(f"Invalid filter_apply_order: {filter_apply_order}")
def _min_p_sampling_from_probs_internal(
probs: torch.Tensor,
uniform_samples: torch.Tensor,
maybe_min_p_arr: Optional[torch.Tensor],
min_p_val: float,
deterministic: bool,
) -> torch.Tensor:
with probs.device as device:
probs = probs.float()
uniform_samples = uniform_samples.float()
maybe_min_p_arr = (
maybe_min_p_arr.float() if maybe_min_p_arr is not None else None
)
samples = torch.empty(probs.size(0), dtype=torch.int32, device=device)
torch.ops.sgl_kernel.min_p_sampling_from_probs.default(
probs,
uniform_samples,
samples,
maybe_min_p_arr,
min_p_val,
deterministic,
get_cuda_stream(),
)
return samples
def min_p_sampling_from_probs(
probs: torch.Tensor,
uniform_samples: torch.Tensor,
min_p: Union[torch.Tensor, float],
deterministic: bool = True,
check_nan: bool = False,
) -> torch.Tensor:
if uniform_samples.dim() == 2:
# Take the first row (round) of uniform_samples
uniform_samples = uniform_samples[0]
if check_nan:
if torch.any(torch.isnan(probs)):
raise ValueError("Input probs contains NaN.")
return _min_p_sampling_from_probs_internal(
probs, uniform_samples, *_to_tensor_scalar_tuple(min_p), deterministic
)