chatai/sglang/test/srt/test_w8a8_quantization.py

76 lines
2.0 KiB
Python

import time
import unittest
from types import SimpleNamespace
import requests
from sglang.srt.utils import kill_process_tree
from sglang.test.few_shot_gsm8k import run_eval
from sglang.test.test_utils import (
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
popen_launch_server,
)
class TestW8A8(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.model = "neuralmagic/Meta-Llama-3-8B-Instruct-quantized.w8a8"
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=["--quantization", "w8a8_int8"],
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_gsm8k(self):
args = SimpleNamespace(
num_shots=5,
data_path=None,
num_questions=200,
max_new_tokens=512,
parallel=128,
host="http://127.0.0.1",
port=int(self.base_url.split(":")[-1]),
)
metrics = run_eval(args)
print(metrics)
self.assertGreater(metrics["accuracy"], 0.7)
def run_decode(self, max_new_tokens):
response = requests.post(
self.base_url + "/generate",
json={
"text": "The capital of France is",
"sampling_params": {
"temperature": 0,
"max_new_tokens": max_new_tokens,
},
"ignore_eos": True,
},
)
return response.json()
def test_throughput(self):
max_tokens = 256
tic = time.time()
res = self.run_decode(max_tokens)
tok = time.time()
print(res["text"])
throughput = max_tokens / (tok - tic)
print(f"Throughput: {throughput} tokens/s")
assert throughput >= 140
if __name__ == "__main__":
unittest.main()