chatdesk-ui/chatdesk-ui/lib/generate-bgem3-embedding.ts

42 lines
1.3 KiB
TypeScript

//import { getRuntimeEnv } from "@/lib/ipconfig"
export async function generateBgeM3Embedding(text: string): Promise<number[] | null> {
try {
// 取 Supabase URL 或本地默认
const supaUrl = getRuntimeEnv("SUPABASE_URL") ?? "http://localhost:8000"
// 构造 Embedding 服务地址:同 host + 8001 端口
const urlObj = new URL(supaUrl)
urlObj.port = "8001" // 强制改成 8001
const apiUrl = `${urlObj.origin}/v1/embeddings`
console.debug("......[generateBgeM3Embedding] apiUrl =", apiUrl)
const response = await fetch(apiUrl, {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({
// OpenAI 兼容请求字段
input: text,
model: "text-embedding-bge-m3"
})
});
if (!response.ok) {
throw new Error(`Failed to fetch BGE-M3 embedding: ${response.status}`);
}
// 返回结构为 { object, data: [{ embedding, … }], model, usage }
const result = await response.json();
// 取 data[0].embedding
if (Array.isArray(result.data) && result.data.length > 0) {
return result.data[0].embedding as number[];
} else {
console.error("Unexpected embedding response format:", result);
return null;
}
} catch (err) {
console.error("Error in generateBgeM3Embedding:", err);
return null;
}
}