This commit is contained in:
hailin 2025-08-10 23:08:53 +08:00
parent 0500e81f1c
commit 1bf58c86e1
1 changed files with 55 additions and 34 deletions

View File

@ -119,8 +119,7 @@ def load_model(device: str):
use_fp16 = (precision == "fp16") use_fp16 = (precision == "fp16")
# 仅暴露这张卡;进程内映射为 cuda:0 # 仅暴露这张卡;进程内映射为 cuda:0
os.environ["CUDA_VISIBLE_DEVICES"] = str(idx) mapped = "cuda:0" if device.startswith("cuda") else "cpu"
mapped = "cuda:0"
logger.info("Loading BGEM3 on %s (mapped=%s, %s)", device, mapped, precision) logger.info("Loading BGEM3 on %s (mapped=%s, %s)", device, mapped, precision)
mdl = BGEM3FlagModel(MODEL_PATH, use_fp16=use_fp16, device=mapped) mdl = BGEM3FlagModel(MODEL_PATH, use_fp16=use_fp16, device=mapped)
@ -131,48 +130,67 @@ def load_model(device: str):
# -----------------------------------------------------------------------------# # -----------------------------------------------------------------------------#
def auto_select_and_load() -> tuple: def auto_select_and_load() -> tuple:
""" """
1. 过滤掉空闲显存 < MODEL_VRAM_MB GPU 只用 NVML 选卡并在首次 CUDA 调用前设置 CUDA_VISIBLE_DEVICES
2. 按空闲显存降序依次尝试加载 选卡规则
3. 载入后再次检查若剩余 < POST_LOAD_GAP_MB 视为失败 - 过滤空闲显存 < MODEL_VRAM_MB 的卡
4. 若全部 GPU 不满足 CPU - 按空闲显存降序尝试加载
- 加载后再用 NVML 复检剩余显存 < POST_LOAD_GAP_MB 则换下一张
- 全部不满足则 CPU
""" """
if not torch.cuda.is_available(): # 1) 没有 NVML无法安全做显存筛选 → 尝试盲选 0 号卡(提前 MASK失败就 CPU
logger.info("No GPU detected → CPU") if not _USE_NVML:
if "CUDA_VISIBLE_DEVICES" not in os.environ or os.environ["CUDA_VISIBLE_DEVICES"] == "":
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
try:
mdl, prec = load_model("cuda:0") # 进程内看到的就是单卡 0
return mdl, prec, "cuda:0"
except Exception as e:
logger.warning("No NVML or CUDA unusable (%s) → CPU fallback", e)
mdl, prec = load_model("cpu")
return mdl, prec, "cpu"
# 2) NVML 可用:按空闲显存挑卡(全程不触碰 torch.cuda
try:
gpu_count = pynvml.nvmlDeviceGetCount()
except Exception as e:
logger.warning("NVML getCount failed (%s) → CPU", e)
mdl, prec = load_model("cpu") mdl, prec = load_model("cpu")
return mdl, prec, "cpu" return mdl, prec, "cpu"
# 收集候选卡 (free_MB, idx)
candidates = [] candidates = []
for idx in range(torch.cuda.device_count()): for idx in range(gpu_count):
free_mb = _gpu_mem_info(idx)[0] // 2**20 try:
if free_mb >= MODEL_VRAM_MB: free_b, total_b = _gpu_mem_info(idx) # NVML 路径
candidates.append((free_mb, idx)) free_mb = free_b // 2**20
if free_mb >= MODEL_VRAM_MB:
candidates.append((free_mb, idx))
except Exception as e:
logger.warning("NVML query gpu %d failed: %s", idx, e)
if not candidates: if not candidates:
logger.warning("All GPUs free_mem < %d MB → CPU", MODEL_VRAM_MB) logger.warning("All GPUs free_mem < %d MB → CPU", MODEL_VRAM_MB)
mdl, prec = load_model("cpu") mdl, prec = load_model("cpu")
return mdl, prec, "cpu" return mdl, prec, "cpu"
# 空闲显存从高到低 # 3) 从大到小尝试加载;每次尝试前先 MASK 该卡
for free_mb, idx in sorted(candidates, reverse=True): for free_mb, idx in sorted(candidates, reverse=True):
dev = f"cuda:{idx}"
try: try:
logger.info("Trying %s (free=%d MB)", dev, free_mb) os.environ["CUDA_VISIBLE_DEVICES"] = str(idx) # **关键:先 MASK再触碰 torch**
mdl, prec = load_model(dev) dev_label = f"cuda:{idx}" # 对外标注用全局序号
mdl, prec = load_model("cuda:0") # 进程内实际就是 0 号
# 载入后余量检查NVML 用全局 idx无 NVML 时,用进程内 0 号
if _USE_NVML:
remain_mb = _gpu_mem_info(idx)[0] // 2**20
else:
remain_mb = _gpu_mem_info(0)[0] // 2**20
# 载入后用 NVML 复检剩余显存(仍按全局 idx
remain_mb = _gpu_mem_info(idx)[0] // 2**20
if remain_mb < POST_LOAD_GAP_MB: if remain_mb < POST_LOAD_GAP_MB:
raise RuntimeError(f"post-load free {remain_mb} MB < {POST_LOAD_GAP_MB} MB") raise RuntimeError(f"post-load free {remain_mb} MB < {POST_LOAD_GAP_MB} MB")
return mdl, prec, dev
except RuntimeError as e:
logger.warning("%s unusable (%s) → next", dev, e)
torch.cuda.empty_cache()
return mdl, prec, dev_label
except Exception as e:
logger.warning("GPU %d unusable (%s) → next", idx, e)
# 不要在这里调用 torch.cuda.empty_cache(),以免无意中初始化其他设备
continue
# 4) 都不行 → CPU
logger.warning("No suitable GPU left → CPU fallback") logger.warning("No suitable GPU left → CPU fallback")
mdl, prec = load_model("cpu") mdl, prec = load_model("cpu")
return mdl, prec, "cpu" return mdl, prec, "cpu"
@ -188,22 +206,25 @@ args, _ = parser.parse_known_args()
if FORCE_DEVICE is not None: if FORCE_DEVICE is not None:
if FORCE_DEVICE.lower() == "cpu": if FORCE_DEVICE.lower() == "cpu":
os.environ["CUDA_VISIBLE_DEVICES"] = ""
DEVICE = "cpu" DEVICE = "cpu"
model, PRECISION = load_model("cpu")
else: else:
DEVICE = f"cuda:{int(FORCE_DEVICE)}" if torch.cuda.is_available() else "cpu" os.environ["CUDA_VISIBLE_DEVICES"] = str(int(FORCE_DEVICE)) # 先掩蔽
model, PRECISION = load_model(DEVICE) DEVICE = f"cuda:{int(FORCE_DEVICE)}" # 对外展示全局序号
model, PRECISION = load_model("cuda:0") # 进程内使用 0 号
elif args.device is not None: elif args.device is not None:
if args.device.lower() == "cpu": if args.device.lower() == "cpu":
os.environ["CUDA_VISIBLE_DEVICES"] = ""
DEVICE = "cpu" DEVICE = "cpu"
model, PRECISION = load_model("cpu")
else: else:
DEVICE = f"cuda:{int(args.device)}" if torch.cuda.is_available() else "cpu" os.environ["CUDA_VISIBLE_DEVICES"] = str(int(args.device)) # 先掩蔽
model, PRECISION = load_model(DEVICE) DEVICE = f"cuda:{int(args.device)}"
model, PRECISION = load_model("cuda:0")
else: else:
model, PRECISION, DEVICE = auto_select_and_load() model, PRECISION, DEVICE = auto_select_and_load()
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
# -----------------------------------------------------------------------------# # -----------------------------------------------------------------------------#
# FastAPI # FastAPI
# -----------------------------------------------------------------------------# # -----------------------------------------------------------------------------#