export WANDB_MODE=disabled train_data="\ ../example_data/normal/examples.jsonl " # set large epochs and small batch size for testing num_train_epochs=4 per_device_train_batch_size=2 gradient_accumulation_steps=1 train_group_size=8 # set num_gpus to 2 for testing num_gpus=2 if [ -z "$HF_HUB_CACHE" ]; then export HF_HUB_CACHE="$HOME/.cache/huggingface/hub" fi model_args="\ --model_name_or_path BAAI/bge-reranker-base \ --cache_dir $HF_HUB_CACHE \ " data_args="\ --train_data $train_data \ --cache_path ~/.cache \ --train_group_size $train_group_size \ --query_max_len 256 \ --passage_max_len 256 \ --pad_to_multiple_of 8 \ --knowledge_distillation True \ " training_args="\ --output_dir ./test_encoder_only_base_bge-reranker-base \ --overwrite_output_dir \ --learning_rate 6e-5 \ --fp16 \ --num_train_epochs $num_train_epochs \ --per_device_train_batch_size $per_device_train_batch_size \ --gradient_accumulation_steps $gradient_accumulation_steps \ --dataloader_drop_last True \ --warmup_ratio 0.1 \ --gradient_checkpointing \ --weight_decay 0.01 \ --deepspeed ../../ds_stage0.json \ --logging_steps 1 \ --save_steps 1000 \ " cmd="torchrun --nproc_per_node $num_gpus \ -m FlagEmbedding.finetune.reranker.encoder_only.base \ $model_args \ $data_args \ $training_args \ " echo $cmd eval $cmd