import os from dataclasses import dataclass, field from typing import Optional from transformers import TrainingArguments @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) @dataclass class DataArguments: knowledge_distillation: bool = field( default=False, metadata={"help": "Use knowledge distillation when `pos_scores` and `neg_scores` are in features of training data"} ) train_data: str = field( default=None, metadata={"help": "One or more paths to training data", "nargs": "+"} ) cache_path: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the cached data"} ) train_group_size: int = field(default=8) query_max_len: int = field( default=32, metadata={ "help": "The maximum total input sequence length after tokenization for passage. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) passage_max_len: int = field( default=128, metadata={ "help": "The maximum total input sequence length after tokenization for passage. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) max_example_num_per_dataset: int = field( default=None, metadata={"help": "the max number of examples for each dataset"} ) query_instruction_for_retrieval: str= field( default=None, metadata={"help": "instruction for query"} ) passage_instruction_for_retrieval: str = field( default=None, metadata={"help": "instruction for passage"} ) same_task_within_batch: bool = field( default=False, metadata={"help": "All samples in the same batch comes from the same task."} ) shuffle_ratio: float = field( default=0.0, metadata={"help": "The ratio of shuffling the text"} ) small_threshold: int = field( default=0, metadata={"help": "The threshold of small dataset. All small dataset in the same directory will be merged into one dataset."} ) drop_threshold: int = field( default=0, metadata={"help": "The threshold for dropping merged small dataset. If the number of examples in the merged small dataset is less than this threshold, it will be dropped."} ) def __post_init__(self): for train_dir in self.train_data: if not os.path.exists(train_dir): raise FileNotFoundError(f"cannot find file: {train_dir}, please set a true path") @dataclass class RetrieverTrainingArguments(TrainingArguments): negatives_cross_device: bool = field(default=False, metadata={"help": "share negatives across devices"}) temperature: Optional[float] = field(default=0.02) fix_position_embedding: bool = field(default=False, metadata={"help": "Freeze the parameters of position embeddings"}) sentence_pooling_method: str = field(default='cls', metadata={"help": "the pooling method, should be cls or mean"}) normlized: bool = field(default=True) enable_sub_batch: bool = field(default=True, metadata={"help": "Freeze the parameters of position embeddings"}) unified_finetuning: bool = field(default=False, metadata={"help": "use unify fine-tuning"}) use_self_distill: bool = field(default=False, metadata={"help": "use self-distill when using unify fine-tuning"}) fix_encoder: bool = field(default=False, metadata={"help": "Freeze the parameters of encoder"}) colbert_dim: int = field(default=-1, metadata={"help": "Dim of colbert linear"}) self_distill_start_step: int = field(default=-1, metadata={"help": "Num of step when using self-distill"})