# MKQA MKQA is a cross-lingual question answering dataset covering 25 non-English languages. For more details, please refer to [here](https://github.com/apple/ml-mkqa). We filter questions which types are `unanswerable`, `binary` and `long-answer`. Finally we get 6,619 questions for every language. To perform evaluation, you should firstly **download the test data**: ```bash # download wget https://huggingface.co/datasets/Shitao/bge-m3-data/resolve/main/MKQA_test-data.zip # unzip to `qa_data` dir unzip MKQA_test-data.zip -d qa_data ``` We use the well-processed NQ [corpus](https://huggingface.co/datasets/BeIR/nq) offered by BEIR as the candidate, and perform evaluation with metrics: Recall@100 and Recall@20. Here the definition of Recall@k refers to [RocketQA](https://aclanthology.org/2021.naacl-main.466.pdf). ## Dense Retrieval If you only want to perform dense retrieval with embedding models, you can follow the following steps: 1. Install Java, Pyserini and Faiss (CPU version or GPU version): ```bash # install java (Linux) apt update apt install openjdk-11-jdk # install pyserini pip install pyserini # install faiss ## CPU version conda install -c conda-forge faiss-cpu ## GPU version conda install -c conda-forge faiss-gpu ``` 2. Dense retrieval: ```bash cd dense_retrieval # 1. Generate Corpus Embedding python step0-generate_embedding.py \ --encoder BAAI/bge-m3 \ --index_save_dir ./corpus-index \ --max_passage_length 512 \ --batch_size 256 \ --fp16 \ --add_instruction False \ --pooling_method cls \ --normalize_embeddings True # 2. Search Results python step1-search_results.py \ --encoder BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --index_save_dir ./corpus-index \ --result_save_dir ./search_results \ --qa_data_dir ../qa_data \ --threads 16 \ --batch_size 32 \ --hits 1000 \ --pooling_method cls \ --normalize_embeddings True \ --add_instruction False # 3. Print and Save Evaluation Results python step2-eval_dense_mkqa.py \ --encoder BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --search_result_save_dir ./search_results \ --qa_data_dir ../qa_data \ --eval_result_save_dir ./eval_results \ --metrics recall@20 recall@100 \ --threads 32 \ --pooling_method cls \ --normalize_embeddings True ``` There are some important parameters: - `encoder`: Name or path of the model to evaluate. - `languages`: The languages you want to evaluate on. Avaliable languages: `ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw`. - `max_passage_length`: Maximum passage length when encoding. - `batch_size`: Batch size for query and corpus when encoding. For faster evaluation, you should set the `batch_size` as large as possible. - `pooling_method` & `normalize_embeddings`: You should follow the corresponding setting of the model you are evaluating. For example, `BAAI/bge-m3` is `cls` and `True`, `intfloat/multilingual-e5-large` is `mean` and `True`, and `intfloat/e5-mistral-7b-instruct` is `last` and `True`. - `overwrite`: Whether to overwrite evaluation results. ## Hybrid Retrieval (Dense & Sparse) If you want to perform **hybrid retrieval with both dense and sparse methods**, you can follow the following steps: 1. Install Java, Pyserini and Faiss (CPU version or GPU version): ```bash # install java (Linux) apt update apt install openjdk-11-jdk # install pyserini pip install pyserini # install faiss ## CPU version conda install -c conda-forge faiss-cpu ## GPU version conda install -c conda-forge faiss-gpu ``` 2. Dense retrieval: ```bash cd dense_retrieval # 1. Generate Corpus Embedding python step0-generate_embedding.py \ --encoder BAAI/bge-m3 \ --index_save_dir ./corpus-index \ --max_passage_length 512 \ --batch_size 256 \ --fp16 \ --add_instruction False \ --pooling_method cls \ --normalize_embeddings True # 2. Search Results python step1-search_results.py \ --encoder BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --index_save_dir ./corpus-index \ --result_save_dir ./search_results \ --qa_data_dir ../qa_data \ --threads 16 \ --batch_size 32 \ --hits 1000 \ --pooling_method cls \ --normalize_embeddings True \ --add_instruction False # 3. Print and Save Evaluation Results python step2-eval_dense_mkqa.py \ --encoder BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --search_result_save_dir ./search_results \ --qa_data_dir ../qa_data \ --eval_result_save_dir ./eval_results \ --metrics recall@20 recall@100 \ --threads 32 \ --pooling_method cls \ --normalize_embeddings True ``` 3. Sparse Retrieval ```bash cd sparse_retrieval # 1. Generate Query and Corpus Sparse Vector python step0-encode_query-and-corpus.py \ --encoder BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --qa_data_dir ../qa_data \ --save_dir ./encoded_query-and-corpus \ --max_query_length 512 \ --max_passage_length 512 \ --batch_size 1024 \ --pooling_method cls \ --normalize_embeddings True # 2. Output Search Results python step1-search_results.py \ --encoder BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --encoded_query_and_corpus_save_dir ./encoded_query-and-corpus \ --result_save_dir ./search_results \ --qa_data_dir ../qa_data \ --threads 16 \ --hits 1000 # 3. Print and Save Evaluation Results python step2-eval_sparse_mkqa.py \ --encoder BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --search_result_save_dir ./search_results \ --qa_data_dir ../qa_data \ --eval_result_save_dir ./eval_results \ --metrics recall@20 recall@100 \ --threads 32 \ --pooling_method cls \ --normalize_embeddings True ``` 4. Hybrid Retrieval ```bash cd hybrid_retrieval # 1. Search Dense and Sparse Results Dense Retrieval Sparse Retrieval # 2. Hybrid Dense and Sparse Search Results python step0-hybrid_search_results.py \ --model_name_or_path BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --dense_search_result_save_dir ../dense_retrieval/search_results \ --sparse_search_result_save_dir ../sparse_retrieval/search_results \ --hybrid_result_save_dir ./search_results \ --top_k 1000 \ --dense_weight 1 --sparse_weight 0.3 \ --threads 32 # 3. Print and Save Evaluation Results python step1-eval_hybrid_mkqa.py \ --model_name_or_path BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --search_result_save_dir ./search_results \ --qa_data_dir ../qa_data \ --eval_result_save_dir ./eval_results \ --metrics recall@20 recall@100 \ --threads 32 \ --pooling_method cls \ --normalize_embeddings True ``` ## MultiVector and All Rerank If you want to perform **multi-vector reranking** or **all reranking** based on the search results of dense retrieval, you can follow the following steps: 1. Install Java, Pyserini and Faiss (CPU version or GPU version): ```bash # install java (Linux) apt update apt install openjdk-11-jdk # install pyserini pip install pyserini # install faiss ## CPU version conda install -c conda-forge faiss-cpu ## GPU version conda install -c conda-forge faiss-gpu ``` 2. Dense retrieval: ```bash cd dense_retrieval # 1. Generate Corpus Embedding python step0-generate_embedding.py \ --encoder BAAI/bge-m3 \ --index_save_dir ./corpus-index \ --max_passage_length 512 \ --batch_size 256 \ --fp16 \ --add_instruction False \ --pooling_method cls \ --normalize_embeddings True # 2. Search Results python step1-search_results.py \ --encoder BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --index_save_dir ./corpus-index \ --result_save_dir ./search_results \ --qa_data_dir ../qa_data \ --threads 16 \ --batch_size 32 \ --hits 1000 \ --pooling_method cls \ --normalize_embeddings True \ --add_instruction False # 3. Print and Save Evaluation Results python step2-eval_dense_mkqa.py \ --encoder BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --search_result_save_dir ./search_results \ --qa_data_dir ../qa_data \ --eval_result_save_dir ./eval_results \ --metrics recall@20 recall@100 \ --threads 32 \ --pooling_method cls \ --normalize_embeddings True ``` 3. Rerank search results with multi-vector scores or all scores: ```bash cd multi_vector_rerank # 1. Rerank Search Results python step0-rerank_results.py \ --encoder BAAI/bge-m3 \ --reranker BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --search_result_save_dir ../dense_retrieval/search_results \ --qa_data_dir ../qa_data \ --rerank_result_save_dir ./rerank_results \ --top_k 100 \ --batch_size 4 \ --max_length 512 \ --pooling_method cls \ --normalize_embeddings True \ --dense_weight 1 --sparse_weight 0.3 --colbert_weight 1 \ --num_shards 1 --shard_id 0 --cuda_id 0 # 2. Print and Save Evaluation Results python step1-eval_rerank_mkqa.py \ --encoder BAAI/bge-m3 \ --reranker BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --search_result_save_dir ./rerank_results \ --qa_data_dir ../qa_data \ --eval_result_save_dir ./eval_results \ --metrics recall@20 recall@100 \ --threads 32 ``` >**Note**: > >- You should set `dense_weight`, `sparse_weight` and `colbert_weight` based on the downstream task scenario. If the dense method performs well while the sparse method does not, you can lower `sparse_weight` and increase `dense_weight` accordingly. > >- Based on our experience, dividing the sentence pairs to be reranked into several shards and computing scores for each shard on a single GPU tends to be more efficient than using multiple GPUs to compute scores for all sentence pairs directly.Therefore, if your machine have multiple GPUs, you can set `num_shards` to the number of GPUs and launch multiple terminals to execute the command (`shard_id` should be equal to `cuda_id`). Therefore, if you have multiple GPUs on your machine, you can launch multiple terminals and run multiple commands simultaneously. Make sure to set the `shard_id` and `cuda_id` appropriately, and ensure that you have computed scores for all shards before proceeding to the second step. 4. (*Optional*) In the 3rd step, you can get all three kinds of scores, saved to `rerank_result_save_dir/dense/{encoder}-{reranker}`, `rerank_result_save_dir/sparse/{encoder}-{reranker}` and `rerank_result_save_dir/colbert/{encoder}-{reranker}`. If you want to try other weights, you don't need to rerun the 4th step. Instead, you can use [this script](./multi_vector_rerank/hybrid_all_results.py) to hybrid the three kinds of scores directly. ```bash cd multi_vector_rerank # 1. Hybrid All Search Results python hybrid_all_results.py \ --encoder BAAI/bge-m3 \ --reranker BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --dense_search_result_save_dir ./rerank_results/dense \ --sparse_search_result_save_dir ./rerank_results/sparse \ --colbert_search_result_save_dir ./rerank_results/colbert \ --hybrid_result_save_dir ./hybrid_search_results \ --top_k 200 \ --threads 32 \ --dense_weight 1 --sparse_weight 0.1 --colbert_weight 1 # 2. Print and Save Evaluation Results python step1-eval_rerank_mkqa.py \ --encoder BAAI/bge-m3 \ --reranker BAAI/bge-m3 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --search_result_save_dir ./hybrid_search_results \ --qa_data_dir ../qa_data \ --eval_result_save_dir ./eval_hybrid_results \ --metrics recall@20 recall@100 \ --threads 32 ``` ## BM25 Baseline We provide two methods of evaluating BM25 baseline: 1. Use the same tokenizer with [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) (i.e., tokenizer of [XLM-Roberta](https://huggingface.co/FacebookAI/xlm-roberta-large)): ```bash cd sparse_retrieval # 1. Output Search Results with BM25 python bm25_baseline_same_tokenizer.py # 2. Print and Save Evaluation Results python step2-eval_sparse_mkqa.py \ --encoder bm25_same_tokenizer \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --search_result_save_dir ./search_results \ --qa_data_dir ../qa_data \ --eval_result_save_dir ./eval_results \ --metrics recall@20 recall@100 \ --threads 32 ``` 2. Use the language analyzer provided by [Anserini](https://github.com/castorini/anserini/blob/master/src/main/java/io/anserini/analysis/AnalyzerMap.java) ([Lucene Tokenizer](https://github.com/apache/lucene/tree/main/lucene/analysis/common/src/java/org/apache/lucene/analysis)): ```bash cd sparse_retrieval # 1. Output Search Results with BM25 python bm25_baseline.py # 2. Print and Save Evaluation Results python step2-eval_sparse_mkqa.py \ --encoder bm25 \ --languages ar da de es fi fr he hu it ja km ko ms nl no pl pt ru sv th tr vi zh_cn zh_hk zh_tw \ --search_result_save_dir ./search_results \ --qa_data_dir ../qa_data \ --eval_result_save_dir ./eval_results \ --metrics recall@20 recall@100 \ --threads 32 ```