import logging import os import sys from pathlib import Path import torch import transformers from transformers import AutoTokenizer, HfArgumentParser, set_seed, AutoConfig, Trainer from arguments import ModelArguments, DataArguments, \ PretrainTrainingArguments as TrainingArguments from data import TrainDatasetForEmbedding, EmbedCollator from load_model import get_model from modeling import PreModel from trainer import PreTrainer logger = logging.getLogger(__name__) def main(): parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() model_args: ModelArguments data_args: DataArguments training_args: TrainingArguments if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) logger.info("Model parameters %s", model_args) logger.info("Data parameters %s", data_args) # Set seed set_seed(training_args.seed) num_labels = 1 config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, cache_dir=model_args.cache_dir, ) logger.info('Config: %s', config) model = get_model(model_args, training_args.gradient_checkpointing) tokenizer = AutoTokenizer.from_pretrained( # model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, model_args.model_name_or_path, token=model_args.token, cache_dir=model_args.cache_dir, use_fast=False ) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.unk_token # special_tokens_dict = {'additional_special_tokens': ['', '', '', '', # '', '', '', '', # '', '', '', '', # '', '', '', '', ]} # tokenizer.add_special_tokens(special_tokens_dict) tokenizer.padding_side = "left" # Allow batched inference print(tokenizer) special_tokens = ['', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', ] current_vocab = tokenizer.get_vocab() tokens_to_add = [token for token in special_tokens if token not in current_vocab] if tokens_to_add: special_tokens_dict = {'additional_special_tokens': tokens_to_add} tokenizer.add_special_tokens(special_tokens_dict) model.resize_token_embeddings(len(tokenizer)) print(tokenizer) if training_args.gradient_checkpointing: model.enable_input_require_grads() train_dataset = TrainDatasetForEmbedding(tokenizer, args=data_args) trainer = Trainer( model=model, train_dataset=train_dataset, args=training_args, data_collator=EmbedCollator( tokenizer=tokenizer, cutoff_len=data_args.cutoff_len, pad_to_multiple_of=8, return_tensors="pt", padding=True ) ) Path(training_args.output_dir).mkdir(parents=True, exist_ok=True) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir) trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) trainer.save_model() if training_args.deepspeed: trainer.deepspeed.save_checkpoint(training_args.output_dir) print("\n If there's a warning about missing keys above, please disregard :)") if __name__ == "__main__": main()