# Activation-Beacon [Activation Beacon](https://arxiv.org/abs/2401.03462) is a plug-in module to transformer-based LLMs that enables effective, efficient, and flexible compression of long contexts. This folder contains the newer code for activation beacon. It supports more LLMs, including Mistral, Llama-3, and Qwen-2. It also supports more features, including **Deepspeed Zero3 training**, **Flash-Attention-2**, adding **chat template** in training and inference, and **evaluating on more tasks**. However, code in this folder are under development and subject to change in the future. ## Environment ```bash conda create beacon python=3.10.14 conda activate beacon # You may need to adjust the cuda version conda install pytorch pytorch-cuda=12.1 -c pytorch -c nvidia pip install transformers deepspeed accelerate datasets peft pandas seaborn rouge fuzzywuzzy jieba python-Levenshtein pip install flash-attn --no-build-isolation ``` ## Usage ```python import json import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "namespace-Pt/beacon-qwen-2-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ) model = model.cuda().eval() with torch.no_grad(): # short context messages = [{"role": "user", "content": "Tell me about yourself."}] inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda") outputs = model.generate(**inputs, max_new_tokens=50) print(f"Input Length: {inputs['input_ids'].shape[1]}") print(f"Output: {repr(tokenizer.decode(outputs[0], skip_special_tokens=True))}") # reset memory before new generation task model.memory.reset() # long context with open("data/toy/infbench.json", encoding="utf-8") as f: example = json.load(f) messages = [{"role": "user", "content": example["context"]}] inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda") outputs = model.generate(**inputs, do_sample=False, top_p=1, temperature=1, max_new_tokens=20)[:, inputs["input_ids"].shape[1]:] print("*"*20) print(f"Input Length: {inputs['input_ids'].shape[1]}") print(f"Answers: {example['answer']}") print(f"Prediction: {tokenizer.decode(outputs[0], skip_special_tokens=True)}") ``` **NOTE**: It's okay to see warnings like `This is a friendly reminder - the current text generation call will exceed the model's predefined maximum length (32768). Depending on the model, you may observe exceptions, performance degradation, or nothing at all.` Just ignore it. ## Data You should download the data for fine-tuning & evaluation then untar the file at anywhere you prefer, e.g. `/data`: ```bash # feel free to alternate /data to your prefered location wget https://huggingface.co/datasets/namespace-Pt/projects/resolve/main/long-llm.tar.gz?download=true -O /data/long-llm.tar.gz cd /data tar -xzvf long-llm.tar.gz ``` **IMPORTANT NOTE** For any path specified for `train_data` and `eval_data`: if it is prefixed with `long-llm:`, it will be solved to the relative path against [`data_root`](./src/args.py). - e.g. `long-llm:lm/pg19.json` becomes `${data_root}/lm/pg19.json` - you can modify the default value of [`data_root`](./src/args.py), so that you don't need to type it for each command. ## Training See [training section](./examples/training.md). ## Evaluation See [evaluation section](./examples/evaluation.md). ## Citation If you find this repository useful, please give us a star ⭐. To cite our work: ``` @misc{zhang2024soaring, title={Soaring from 4K to 400K: Extending LLM's Context with Activation Beacon}, author={Peitian Zhang and Zheng Liu and Shitao Xiao and Ninglu Shao and Qiwei Ye and Zhicheng Dou}, year={2024}, eprint={2401.03462}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```