import os from dataclasses import dataclass, field from typing import Optional from transformers import TrainingArguments @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) @dataclass class DataArguments: train_data: str = field( default=None, metadata={"help": "Path to train data"} ) train_group_size: int = field(default=8) query_max_len: int = field( default=32, metadata={ "help": "The maximum total input sequence length after tokenization for passage. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) passage_max_len: int = field( default=128, metadata={ "help": "The maximum total input sequence length after tokenization for passage. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) max_example_num_per_dataset: int = field( default=100000000, metadata={"help": "the max number of examples for each dataset"} ) query_instruction_for_retrieval: str= field( default=None, metadata={"help": "instruction for query"} ) passage_instruction_for_retrieval: str = field( default=None, metadata={"help": "instruction for passage"} ) def __post_init__(self): if not os.path.exists(self.train_data): raise FileNotFoundError(f"cannot find file: {self.train_data}, please set a true path") @dataclass class RetrieverTrainingArguments(TrainingArguments): negatives_cross_device: bool = field(default=False, metadata={"help": "share negatives across devices"}) temperature: Optional[float] = field(default=0.02) fix_position_embedding: bool = field(default=False, metadata={"help": "Freeze the parameters of position embeddings"}) sentence_pooling_method: str = field(default='cls', metadata={"help": "the pooling method, should be cls or mean"}) normlized: bool = field(default=True) use_inbatch_neg: bool = field(default=True, metadata={"help": "use passages in the same batch as negatives"})