import os from dataclasses import dataclass, field from typing import Optional @dataclass class DataTrainingArguments: train_data: Optional[str] = field( default=None, metadata={"help": "Path to pretrain data"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) max_seq_length: Optional[int] = field( default=512, metadata={ "help": "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." }, ) encoder_mlm_probability: float = field(default=0.3, metadata={"help": "mask ratio for encoder"}) decoder_mlm_probability: float = field(default=0.5, metadata={"help": "mask ratio for decoder"}) def __post_init__(self): if not os.path.exists(self.train_data): raise FileNotFoundError(f"cannot find file: {self.train_data}, please set a true path") @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default='bert-base-uncased', metadata={ "help": "The model checkpoint for weights initialization." "Don't set if you want to train a model from scratch." }, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} )