import logging import os import torch from pathlib import Path from transformers import AutoConfig, AutoTokenizer from transformers import ( HfArgumentParser, set_seed, ) from arguments import ModelArguments, DataArguments, \ RetrieverTrainingArguments as TrainingArguments from data import SameDatasetTrainDataset, SameEmbedCollator from modeling import BiEncoderModel from trainer import BiTrainer from load_model import get_model, save_merged_model logger = logging.getLogger(__name__) def main(): parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() model_args: ModelArguments data_args: DataArguments training_args: TrainingArguments if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) logger.info("Model parameters %s", model_args) logger.info("Data parameters %s", data_args) # Set seed set_seed(training_args.seed) num_labels = 1 tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, token=model_args.token, cache_dir=model_args.cache_dir, use_fast=False, add_eos_token=True ) if tokenizer.pad_token is None: if tokenizer.unk_token is not None: tokenizer.pad_token = tokenizer.unk_token tokenizer.pad_token_id = tokenizer.unk_token_id else: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id tokenizer.padding_side = 'left' # else: # tokenizer.padding_side = 'right' if data_args.use_special_tokens: special_tokens_dict = {'additional_special_tokens': ['', '', '']} add_num = tokenizer.add_special_tokens(special_tokens_dict) else: add_num = 0 if add_num > 0: resize = True else: resize = False base_model = get_model(model_args, training_args.output_dir, resize, len(tokenizer)) config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, cache_dir=model_args.cache_dir, token=model_args.token, ) logger.info('Config: %s', config) model = BiEncoderModel(model=base_model, tokenizer=tokenizer, normlized=training_args.normlized, negatives_cross_device=training_args.negatives_cross_device, temperature=training_args.temperature, sub_batch_size=training_args.sub_batch_size) if training_args.gradient_checkpointing: model.enable_input_require_grads() # if data_args.use_same_batch: train_dataset = SameDatasetTrainDataset(args=data_args, batch_size=training_args.per_device_train_batch_size, seed=training_args.seed, tokenizer=tokenizer, num_processes=training_args.world_size, process_index=training_args.process_index) training_args.per_device_train_batch_size = 1 training_args.dataloader_num_workers = 0 trainer = BiTrainer( model=model, args=training_args, train_dataset=train_dataset, data_collator=SameEmbedCollator( tokenizer=tokenizer, query_max_len=data_args.query_max_len, passage_max_len=data_args.passage_max_len, pad_to_multiple_of=8, return_tensors="pt", padding=True, sub_batch_size=training_args.sub_batch_size ), tokenizer=tokenizer ) Path(training_args.output_dir).mkdir(parents=True, exist_ok=True) # Training trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir) # os.makedirs(os.path.join(training_args.output_dir, 'embedding'), exist_ok=True) # torch.save(base_model.model.model.embed_tokens, os.path.join(training_args.output_dir, 'embedding', 'emb.pth')) def save_model(): parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() model_args: ModelArguments data_args: DataArguments training_args: TrainingArguments if model_args.save_merged_lora_model and training_args.process_index == 0: save_merged_model(model_args, training_args.output_dir) if __name__ == "__main__": main() save_model()