import os import json import logging import datasets import random from typing import List from accelerate import Accelerator from torch.utils.data import DataLoader from transformers import HfArgumentParser from dataclasses import dataclass, field, asdict from src.lm import ( LM, LMArgs, GenerationArgs ) from src.retrieval import ( RetrievalArgs, RetrievalMetric, ) from src.utils.util import makedirs, remove_eos, normalize_text, DefaultDataCollator, DatasetProcessFn, FileLogger from .eval_retrieval import main as retrieval_main from .icl_utils import compute_metrics logger = logging.getLogger(__name__) @dataclass class QRECCArgs(LMArgs, RetrievalArgs): output_dir: str = field( default="data/results/qrecc", ) eval_data: str = field( default="llm-embedder:convsearch/qrecc/test.concat.json", metadata={'help': 'Query jsonl.'} ) corpus: str = field( default="llm-embedder:convsearch/qrecc/corpus.json", metadata={'help': 'Corpus path for retrieval.'} ) key_template: str = field( default="{text}", metadata={'help': 'How to concatenate columns in the corpus to form one key?'} ) do_generate: bool = field( default=False, metadata={'help': 'Generate for computing qa metrics?'} ) hits: int = field( default=100, metadata={'help': 'How many hits per query?'}, ) key_num: int = field( default=3, metadata={'help': 'How many docs to provide in prompt?'}, ) metrics: List[str] = field( default_factory=lambda: ["ndcg", "recall", "collate_key"], ) cutoffs: List[int] = field( default_factory=lambda: [3, 10, 100], metadata={'help': 'Cutoffs to evaluate retrieval metrics.'} ) max_neg_num: int = field( default=32, metadata={'help': 'Maximum negative number to mine.'} ) save_to_output: bool = field( default=True, metadata={'help': 'Save the result/key/negative to output_dir? If not true, they will be saved next to the eval_data.'} ) log_path: str = field( default="data/results/qrecc/qrecc.log", metadata={'help': 'Path to the file for logging.'} ) @dataclass class GenerationArgs(GenerationArgs): max_new_tokens: int = field( default=128, metadata={'help': 'Maximum new tokens to generate.'} ) eos_token_id: int = 13 def process_qrecc(tokenizer, context_max_length=2048, key_num=3, is_encoder_decoder=False): test = tokenizer("test", return_special_tokens_mask=True)["special_tokens_mask"] has_bos = has_eos = False if test[0] == 1: has_bos = True if test[-1] == 1: has_eos = True def _prepare_sample(query, answers=None, **kwds): sample = f"Context and Question: {query}\nAnswer:" if answers is not None: sample = sample + " " + random.choice(answers) return sample def _prepare_retrieval(keys): if keys is not None: keys = keys[:key_num] keys = "\n".join(keys) knowledge = f"Knowledge: {keys}" else: knowledge = "" return knowledge @DatasetProcessFn() def _process(query, query_id, key=None, **kwds): """Yield keys and query with a prompt template""" output = {} query = query.strip() knowledge = _prepare_retrieval(key) left = knowledge # \n\n to split retrieved knowledge right = "\n\n" + _prepare_sample(query) pair = tokenizer.encode(left, right, add_special_tokens=False, truncation="only_first", max_length=context_max_length - int(has_bos) - int(has_eos)) # strip spaces and \n in the head (when there is no retrieved passage) seq = tokenizer.decode(pair).strip() inputs = tokenizer(seq, return_token_type_ids=False) if has_eos and not is_encoder_decoder: inputs = remove_eos(inputs, tokenizer.eos_token_id) inputs["query_id"] = query_id for k, v in inputs.items(): output[k] = v return output return _process def evaluate_qrecc(eval_data, save_path, **kwds): def compute_metric(eval_preds): makedirs(save_path) samples = {} with open(eval_data) as f: for line in f: sample = json.loads(line.strip()) samples[sample["query_id"]] = sample["answers"][0] preds = [] answers = [] with open(save_path, "w") as f: for query_id, generation in zip(*eval_preds): answer = samples[query_id] preds.append(generation) answers.append(answer) sample["output"] = generation f.write(json.dumps(sample, ensure_ascii=False) + "\n") rouge_l = compute_metrics("rl", labels=answers, preds=preds) return rouge_l return compute_metric def main(): parser = HfArgumentParser([QRECCArgs, GenerationArgs]) args, generation_args = parser.parse_args_into_dataclasses() accelerator = Accelerator(cpu=args.cpu) # modify the output_dir for retrieval if args.retrieval_method == "dense": output_dir = os.path.join(args.output_dir, args.query_encoder.strip(os.sep).replace(os.sep, "--")) else: output_dir = os.path.join(args.output_dir, args.retrieval_method) args.output_dir = output_dir if args.retrieval_method != "no": # retrieval metrics computes ndcg and recall _, _, metrics = retrieval_main(args=args, accelerator=accelerator, log=False) eval_data = RetrievalMetric._get_save_path(args.eval_data, args.output_dir, field="key", save_name=args.save_name) else: eval_data = args.eval_data metrics = {} if args.do_generate: llm = LM( model_name_or_path=args.model_name_or_path, dtype=args.lm_dtype, device_map=args.lm_device_map, padding_side=args.padding_side, cache_dir=args.model_cache_dir, accelerator=accelerator, generation_args=asdict(generation_args) ) tokenizer = llm.tokenizer logging.info(f"Loading data from {eval_data}...") with accelerator.main_process_first(): dataset = datasets.load_dataset("json", data_files=eval_data, split="train", cache_dir=args.dataset_cache_dir) dataset = dataset.map(process_qrecc( tokenizer, context_max_length=args.context_max_length, key_num=args.key_num, is_encoder_decoder=llm.model.config.is_encoder_decoder ), remove_columns=dataset.column_names, batched=True, num_proc=32) data_collator = DefaultDataCollator(tokenizer=tokenizer, add_position_ids=args.add_position_ids) dataloader = DataLoader( dataset, batch_size=args.lm_batch_size, collate_fn=data_collator, pin_memory=True, ) dataloader = accelerator.prepare(dataloader) results = llm.generate(dataloader) if accelerator.process_index == 0: result_path = os.path.join(args.output_dir, args.model_name_or_path.strip(os.sep).replace(os.sep, "--") + ".json") lm_metrics = evaluate_qrecc(eval_data, result_path)(results) else: lm_metrics = {} if accelerator.process_index == 0: file_logger = FileLogger(makedirs(args.log_path)) metrics.update(lm_metrics) file_logger.log(metrics, Args=asdict(args)) if __name__ == "__main__": main()