import os from dataclasses import dataclass, field from typing import Optional @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) @dataclass class DataArguments: train_data: str = field( default=None, metadata={"help": "Path to corpus"} ) train_group_size: int = field(default=8) max_len: int = field( default=512, metadata={ "help": "The maximum total input sequence length after tokenization for input text. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) def __post_init__(self): if not os.path.exists(self.train_data): raise FileNotFoundError(f"cannot find file: {self.train_data}, please set a true path")