import logging import os from pathlib import Path from transformers import AutoConfig, AutoTokenizer, TrainingArguments from transformers import ( HfArgumentParser, set_seed, ) from .arguments import ModelArguments, DataArguments from .data import TrainDatasetForCE, GroupCollator from .modeling import CrossEncoder from .trainer import CETrainer logger = logging.getLogger(__name__) def main(): parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() model_args: ModelArguments data_args: DataArguments training_args: TrainingArguments if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) logger.info("Model parameters %s", model_args) logger.info("Data parameters %s", data_args) set_seed(training_args.seed) num_labels = 1 tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=False, ) config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, cache_dir=model_args.cache_dir, ) _model_class = CrossEncoder model = _model_class.from_pretrained( model_args, data_args, training_args, model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) train_dataset = TrainDatasetForCE(data_args, tokenizer=tokenizer) _trainer_class = CETrainer trainer = _trainer_class( model=model, args=training_args, train_dataset=train_dataset, data_collator=GroupCollator(tokenizer), tokenizer=tokenizer ) Path(training_args.output_dir).mkdir(parents=True, exist_ok=True) trainer.train() trainer.save_model() if __name__ == "__main__": main()