#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ BGEM3 inference server (FastAPI) with robust GPU / CPU management. Launch examples: python server.py # 自动选卡 / 自动降级 python server.py --device 1 # 固定用第 1 张 GPU CUDA_VISIBLE_DEVICES=0,1 python server.py """ import argparse import logging import os import sys import time from typing import List, Union import multiprocessing as mp import torch from fastapi import FastAPI, HTTPException from pydantic import BaseModel from transformers import AutoTokenizer from FlagEmbedding import BGEM3FlagModel mp.set_start_method("spawn", force=True) # -----------------------------------------------------------------------------# # Config # -----------------------------------------------------------------------------# MODEL_PATH = "model/bge-m3" # 按需改成你的权重路径 MODEL_VRAM_MB = int(os.getenv("MODEL_VRAM_MB", "8000")) # bge-m3-large fp32 ≈ 8 GiB POST_LOAD_GAP_MB = 192 SAFE_MIN_FREE_MB = MODEL_VRAM_MB + POST_LOAD_GAP_MB # == 8192 MB # -----------------------------------------------------------------------------# # Logging # -----------------------------------------------------------------------------# logger = logging.getLogger("bge-m3-server") logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s", ) # -----------------------------------------------------------------------------# # GPU memory helpers (NVML → torch fallback) # -----------------------------------------------------------------------------# try: import pynvml pynvml.nvmlInit() _USE_NVML = True except Exception: _USE_NVML = False logger.warning("pynvml 不可用,将使用 torch.cuda.mem_get_info() 探测显存") def _gpu_mem_info(idx: int) -> tuple[int, int]: """Return (free_bytes, total_bytes) for GPU `idx`.""" if _USE_NVML: handle = pynvml.nvmlDeviceGetHandleByIndex(idx) mem = pynvml.nvmlDeviceGetMemoryInfo(handle) return mem.free, mem.total # torch fallback torch.cuda.set_device(idx) free, total = torch.cuda.mem_get_info(idx) return free, total # -----------------------------------------------------------------------------# # Precision & model loader # -----------------------------------------------------------------------------# def _choose_precision(device: str) -> str: """Return 'fp16'|'bf16'|'fp32'.""" if not device.startswith("cuda"): return "fp32" major, _ = torch.cuda.get_device_capability(device) if major >= 8: # Ampere/Hopper return "fp16" if major >= 7: return "bf16" return "fp32" def load_model(device: str): precision = _choose_precision(device) use_fp16 = precision == "fp16" logger.info("Loading BGEM3 on %s (%s)", device, precision) if device == "cpu": # CPU 路径:彻底摘掉 CUDA os.environ["CUDA_VISIBLE_DEVICES"] = "" torch.cuda.is_available = lambda: False torch.cuda.device_count = lambda: 0 else: # GPU 路径:只暴露本 worker 选中的那张卡 # 例:device == "cuda:3" → 只让当前进程看到 GPU 3 idx = device.split(":")[1] os.environ["CUDA_VISIBLE_DEVICES"] = idx # device_count 现在返回 1,BGEM3 只会在这张卡上建 1 个子进程 torch.cuda.device_count = lambda: 1 mdl = BGEM3FlagModel(MODEL_PATH, use_fp16=use_fp16, device=device) # 不再包 DataParallel;每个 worker 单卡即可 return mdl, precision # -----------------------------------------------------------------------------# # Auto-select device (startup) # -----------------------------------------------------------------------------# def auto_select_and_load() -> tuple: """ 1. 过滤掉空闲显存 < MODEL_VRAM_MB 的 GPU 2. 按空闲显存降序依次尝试加载 3. 载入后再次检查:若剩余 < POST_LOAD_GAP_MB → 视为失败 4. 若全部 GPU 不满足 → CPU """ if not torch.cuda.is_available(): logger.info("No GPU detected → CPU") return (*load_model("cpu"), "cpu") # 收集候选卡 (free_MB, idx) candidates = [] for idx in range(torch.cuda.device_count()): free_mb = _gpu_mem_info(idx)[0] // 2**20 if free_mb >= MODEL_VRAM_MB: # 至少能放下权重 candidates.append((free_mb, idx)) if not candidates: logger.warning("All GPUs free_mem < %d MB → CPU", MODEL_VRAM_MB) return (*load_model("cpu"), "cpu") # 空闲显存从高到低 for free_mb, idx in sorted(candidates, reverse=True): dev = f"cuda:{idx}" try: logger.info("Trying %s (free=%d MB)", dev, free_mb) mdl, prec = load_model(dev) remain_mb = _gpu_mem_info(idx)[0] // 2**20 if remain_mb < POST_LOAD_GAP_MB: raise RuntimeError( f"post-load free {remain_mb} MB < {POST_LOAD_GAP_MB} MB") return mdl, prec, dev # 成功 except RuntimeError as e: logger.warning("%s unusable (%s) → next", dev, e) torch.cuda.empty_cache() logger.warning("No suitable GPU left → CPU fallback") return (*load_model("cpu"), "cpu") # -----------------------------------------------------------------------------# # CLI # -----------------------------------------------------------------------------# parser = argparse.ArgumentParser() parser.add_argument( "--device", help="GPU index (e.g. 0) or 'cpu'; overrides auto-selection" ) args, _ = parser.parse_known_args() if args.device is not None: # Forced path if args.device.lower() == "cpu": DEVICE = "cpu" else: DEVICE = f"cuda:{int(args.device)}" if torch.cuda.is_available() else "cpu" model, PRECISION = load_model(DEVICE) else: # Auto path with VRAM check model, PRECISION, DEVICE = auto_select_and_load() tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) # -----------------------------------------------------------------------------# # FastAPI # -----------------------------------------------------------------------------# app = FastAPI() logger.info("Using SAFE_MIN_FREE_MB = %d MB", SAFE_MIN_FREE_MB) def _warm_worker(t, q): try: _ = model.encode(t, return_dense=True) q.put("ok") except Exception as e: q.put(str(e)) # ② -------- FastAPI 启动预热 -------- @app.on_event("startup") def warm_up(): logger.info("Warm-up on %s", DEVICE) try: texts = ["warmup"] q = mp.Queue() p = mp.Process(target=_warm_worker, args=(texts, q)) p.start() p.join(timeout=60) if not q.empty() and q.get() == "ok": logger.info("Warm-up complete.") else: logger.warning("Warm-up failed or timed out.") except Exception as e: logger.warning("Warm-up exception: %s", e) class EmbeddingRequest(BaseModel): input: Union[str, List[str]] model: str = "text-embedding-bge-m3" # ③ -------- _encode() 里 worker 调用 -------- def _worker(t, q): try: # out = model.encode(t, return_dense=True) # GPU or CPU 均安全 out = model.encode(t, return_dense=True) q.put(("ok", out)) except Exception as e: q.put(("err", str(e))) def _encode(texts: List[str]): """ 单次请求: 1. 子进程跑 GPU 推理;成功→返回 2. 若子进程 OOM / CUDA Error → 同一次请求 fallback 到 CPU 绝不改全局状态,其他并发请求不受影响 """ q = mp.Queue() p = mp.Process(target=_worker, args=(texts, q)) p.start() p.join(timeout=60) if not q.empty(): status, payload = q.get() if status == "ok": return payload if "out of memory" in payload.lower() or "cuda error" in payload.lower(): logger.warning("GPU OOM → 本次请求改走 CPU:%s", payload) torch.cuda.empty_cache() cpu_model, _ = load_model("cpu") return cpu_model.encode(texts, return_dense=True) raise RuntimeError(payload) raise RuntimeError("子进程异常退出,无返回") @app.post("/v1/embeddings") def create_embedding(request: EmbeddingRequest): texts = [request.input] if isinstance(request.input, str) else request.input # Token stats enc = tokenizer( texts, padding=True, truncation=True, max_length=8192, return_tensors="pt", ) prompt_tokens = int(enc["attention_mask"].sum().item()) try: output = _encode(texts) embeddings = output["dense_vecs"] except Exception as e: logger.exception("Embedding failed") raise HTTPException(status_code=500, detail=str(e)) return { "object": "list", "data": [ { "object": "embedding", "index": i, "embedding": emb.tolist() if hasattr(emb, "tolist") else emb, } for i, emb in enumerate(embeddings) ], "model": request.model, "usage": { "prompt_tokens": prompt_tokens, "total_tokens": prompt_tokens, }, "device": DEVICE, "precision": PRECISION, } # -----------------------------------------------------------------------------# # Entry-point for `python server.py` # -----------------------------------------------------------------------------# if __name__ == "__main__": import uvicorn uvicorn.run( "server:app", host="0.0.0.0", port=int(os.getenv("PORT", 8000)), log_level="info", workers=1, # multi-process → use gunicorn/uvicorn externally )