import os import sys import pytz import json import torch import shutil import pathlib import time import pickle import logging import string import numpy as np from contextlib import contextmanager from dataclasses import dataclass from transformers.tokenization_utils import PreTrainedTokenizer from datetime import datetime from collections import OrderedDict from typing import Optional, List, Dict, Any, Mapping, Iterable, Union logger = logging.getLogger(__name__) @contextmanager def do_nothing(): yield def optional_grad_ctx(with_grad=False): if with_grad: return do_nothing() else: return torch.no_grad() def makedirs(path): p = pathlib.Path(path) p.parent.mkdir(parents=True, exist_ok=True) return path def clear_dir(directory): if not os.path.exists(directory): os.makedirs(directory, exist_ok=True) for filename in os.listdir(directory): file_path = os.path.join(directory, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: print('Failed to delete %s. Reason: %s' % (file_path, e)) def split_file_dir_name_ext(path): """Return the directory, name, and extension of a given file.""" p = pathlib.Path(path) assert p.is_file(), f"{path} is not a valid file!" return p.parent, p.stem, p.suffix def save_pickle(obj, path:str): """ Save pickle file. """ if not os.path.exists(path): makedirs(path) with open(path, "wb") as f: return pickle.dump(obj, f) def load_pickle(path): with open(path, "rb") as f: return pickle.load(f) def save_json(obj, path:str): if not os.path.exists(path): makedirs(path) with open(path, "w") as f: return json.dump(obj, f) def load_json(path, lines=False): if lines: output = [] with open(path, "r", encoding="utf-8") as f: for line in f: output.append(json.loads(line)) return output else: with open(path, "r", encoding="utf-8") as f: return json.load(f) def format_numel_str(numel: int) -> str: T = 1e12 B = 1e9 M = 1e6 K = 1e3 if numel >= T: return f"{numel / T:.2f} T" if numel >= B: return f"{numel / B:.2f} B" elif numel >= M: return f"{numel / M:.2f} M" elif numel >= K: return f"{numel / K:.2f} K" else: return f"{numel}" def batched_iter(iterable: Iterable, max_batch_size: int): """ Batches an iterable into lists of given maximum size, yielding them one by one. """ batch = [] for element in iterable: batch.append(element) if len(batch) >= max_batch_size: yield batch batch = [] if len(batch) > 0: yield batch def show_time(times): times = np.array(times) times = np.diff(times, axis=-1) print(times) return times @contextmanager def filelock(path, process_index=0): while os.path.exists(path): if i == 0 and process_index == 0: logger.info("found lock, waiting for other programs...") time.sleep(3) i = 1 if process_index == 0: save_json("this is a lock", path) yield if process_index == 0: os.remove(path) def normalize_text(text, ignore_case=True, ignore_punctuation=True, ignore_space=True, ignore_number=False): if isinstance(text, str): text = [text] unpack = True else: unpack = False if ignore_case: text = np.char.lower(text) if ignore_punctuation: repl_table = string.punctuation.maketrans("", "", string.punctuation) text = np.char.translate(text, table=repl_table) if ignore_number: repl_table = string.digits.maketrans("", "", string.digits) text = np.char.translate(text, table=repl_table) if ignore_space: for i, words in enumerate(np.char.split(text)): text[i] = " ".join(words) if isinstance(text, np.ndarray): text = text.tolist() if unpack: text = text[0] return text def wrap_text(s): """Capitalize and add punctuation if there isn't.""" s = s.strip() if not s[0].isupper(): s = s[0].capitalize() + s[1:] if s[-1] not in string.punctuation: s += "." return s def min_max_normalize(array): return (array - array.min(-1)[:,None])/(array.max(-1) - array.min(-1))[:, None] def softmax(x:np.ndarray, axis=-1): if isinstance(x, list): x = np.array(x) x = x - x.max(axis=axis, keepdims=True) y = np.exp(x) return y / y.sum(axis=axis, keepdims=True) def get_max_length_in_nested_lists(lst): if len(lst) and isinstance(lst[0], list): lengths = [] for elem in lst: length = get_max_length_in_nested_lists(elem) lengths.append(length) max_length = max(lengths) return max_length else: return len(lst) def pad_nested_lists(lst, max_length, padding_value, padding_side="right"): if isinstance(lst, list) and len(lst) and isinstance(lst[0], list): masks = [] for i, elem in enumerate(lst): lst[i], mask = pad_nested_lists(elem, max_length, padding_value, padding_side) masks.append(mask) return lst, masks elif isinstance(lst, list): if padding_side == "right": mask = [1] * len(lst) + [0] * (max_length - len(lst)) lst = lst + [padding_value for _ in range(max_length - len(lst))] return lst, mask else: mask = [0] * (max_length - len(lst)) + [1] * len(lst) lst = [padding_value for _ in range(max_length - len(lst))] + lst return lst, mask else: raise NotImplementedError(f"Unrecognized type {lst}") def mask_nested_lists(lst, mask_target, mask_value=0): if isinstance(lst[0], list): for i, elem in enumerate(lst): lst[i] = mask_nested_lists(elem, mask_target, mask_value) return lst else: return [x if x != mask_target else mask_value for x in lst] def are_elements_of_same_length(lst: List): if not isinstance(lst[0], list): return False length = len(lst[0]) return all(len(x) == length if isinstance(x, list) else False for x in lst) def add_eos(inputs: Mapping, eos_token_id: int): """Add eos for BatchEncoding object.""" assert isinstance(inputs["input_ids"], list), f"Make sure the return_tensors are set to list!" if inputs["input_ids"][-1] != eos_token_id: for k, v in inputs.items(): if k in ["input_ids", "labels"]: v = v + [eos_token_id] elif k == "attention_mask": v = v + [1] elif k == "position_ids": v = v + [v[-1] + 1] elif k == "token_type_ids": v = v + v[-1:] else: raise NotImplementedError(f"Inputs key {k} not implemented!") inputs[k] = v return inputs def remove_eos(inputs: Mapping, eos_token_ids: Union[List,int]): if isinstance(eos_token_ids, int): eos_token_ids = [eos_token_ids] input_ids = inputs["input_ids"] eos_idx = [i for i, x in enumerate(input_ids) if x in eos_token_ids][0] for k, v in inputs.items(): inputs[k].pop(eos_idx) return inputs def mix_parameters(models: List[torch.nn.Module], weights: Optional[List[float]]=None): """Mix parameters of different models according to given weights. Returns: the model with mixed parameters. """ new_state_dict = OrderedDict() if weights is None: weights = [1 / len(models) for _ in range(len(models))] else: assert len(weights) == len(models), f"Make sure the size of mix weights equals to the number of models!" for name_param_pairs in zip(*[model.state_dict().items() for model in models]): names = [name_param_pair[0] for name_param_pair in name_param_pairs] params = [name_param_pair[1] for name_param_pair in name_param_pairs] assert all(name == names[0] for name in names), f"Found incompatible key in {names}!" name = names[0] mixed_param = None # there may be non-float parameters stored, which should not be mixed if params[0].dtype not in [torch.float16, torch.bfloat16, torch.float32]: assert all((param == params[0]).all() for param in params), f"Found incompatible value in non-float tensor {params}!" new_state_dict[name] = params[0] continue for weight, param in zip(weights, params): if mixed_param is None: mixed_param = weight * param else: mixed_param += weight * param new_state_dict[name] = mixed_param model = models[0] info = model.load_state_dict(new_state_dict) print(info) return model class FileLogger: def __init__(self, log_file) -> None: self.log_file = log_file def log(self, metrics, **kwargs): with open(self.log_file, "a+") as f: # get current time tz = pytz.timezone('Asia/Shanghai') time = f"{'Time': <10}: {json.dumps(datetime.now(tz).strftime('%Y-%m-%d, %H:%M:%S'), ensure_ascii=False)}\n" print(time) command = f"{'Command': <10}: {json.dumps(' '.join(sys.argv), ensure_ascii=False)}\n" print(command) metrics = f"{'Metrics': <10}: {json.dumps(metrics, ensure_ascii=False)}\n" msg = time + command for key, value in kwargs.items(): x = f"{key: <10}: {json.dumps(value, ensure_ascii=False)}\n" print(x) msg += x msg += metrics print(metrics) f.write(str(msg) + "\n") @dataclass class DefaultDataCollator: """ Data collator that can: 1. Dynamically pad all inputs received. The inputs must be dict of lists. 2. Add position_ids based on attention_mask if required. """ tokenizer: PreTrainedTokenizer attention_padding_value: int = 0 label_padding_value: int = -100 keys_to_tensorize = {"input_ids", "attention_mask", "labels", "position_ids", "token_type_ids", "length", "depth", "index"} def __call__(self, batch_elem: List) -> Dict[str, Any]: first_elem = batch_elem[0] return_batch = {} for key, value in first_elem.items(): # HACK: any key containing attention_mask must be attention_mask # important to assign different pad token for different types of inputs if "attention_mask" in key: pad_token_id = self.attention_padding_value elif "label" in key: pad_token_id = self.label_padding_value else: pad_token_id = self.tokenizer.pad_token_id batch_value = [elem[key] for elem in batch_elem] # pad all lists and nested lists if isinstance(value, list) and key in self.keys_to_tensorize: max_length = get_max_length_in_nested_lists(batch_value) batch_value, _ = pad_nested_lists(batch_value, max_length, pad_token_id, self.tokenizer.padding_side) if key in self.keys_to_tensorize: return_batch[key] = torch.tensor(batch_value) else: # handle strings and None return_batch[key] = batch_value return return_batch