embed-bge-m3/FlagEmbedding/docs/source/bge/bge_reranker_v2.rst

90 lines
6.3 KiB
ReStructuredText

BGE-Reranker-v2
===============
+------------------------------------------------------------------------------------------------------------------+-----------------------+-------------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------+
| Model | Language | Parameters | Model Size | Description |
+==================================================================================================================+=======================+=============+==============+=========================================================================================================================================================+
| `BAAI/bge-reranker-v2-m3 <https://huggingface.co/BAAI/bge-reranker-v2-m3>`_ | Multilingual | 568M | 2.27 GB | Lightweight reranker model, possesses strong multilingual capabilities, easy to deploy, with fast inference. |
+------------------------------------------------------------------------------------------------------------------+-----------------------+-------------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------+
| `BAAI/bge-reranker-v2-gemma <https://huggingface.co/BAAI/bge-reranker-v2-gemma>`_ | Multilingual | 2.51B | 10 GB | Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. |
+------------------------------------------------------------------------------------------------------------------+-----------------------+-------------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------+
| `BAAI/bge-reranker-v2-minicpm-layerwise <https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise>`_ | Multilingual | 2.72B | 10.9 GB | Suitable for multilingual contexts, allows freedom to select layers for output, facilitating accelerated inference. |
+------------------------------------------------------------------------------------------------------------------+-----------------------+-------------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------+
| `BAAI/bge-reranker-v2.5-gemma2-lightweight <https://huggingface.co/BAAI/bge-reranker-v2.5-gemma2-lightweight>`_ | Multilingual | 2.72B | 10.9 GB | Suitable for multilingual contexts, allows freedom to select layers, compress ratio and compress layers for output, facilitating accelerated inference. |
+------------------------------------------------------------------------------------------------------------------+-----------------------+-------------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------+
.. tip::
You can select the model according your senario and resource:
- For multilingual, utilize :code:`BAAI/bge-reranker-v2-m3`, :code:`BAAI/bge-reranker-v2-gemma` and :code:`BAAI/bge-reranker-v2.5-gemma2-lightweight`.
- For Chinese or English, utilize :code:`BAAI/bge-reranker-v2-m3` and :code:`BAAI/bge-reranker-v2-minicpm-layerwise`.
- For efficiency, utilize :code:`BAAI/bge-reranker-v2-m3` and the low layer of :code:`BAAI/bge-reranker-v2-minicpm-layerwise`.
- For better performance, recommand :code:`BAAI/bge-reranker-v2-minicpm-layerwise` and :code:`BAAI/bge-reranker-v2-gemma`.
Make sure always test on your real use case and choose the one with best speed-quality balance!
Usage
-----
**bge-reranker-v2-m3**
Use :code:`bge-reranker-v2-m3` in the same way as bge-reranker-base and bge-reranker-large.
.. code:: python
from FlagEmbedding import FlagReranker
# Setting use_fp16 to True speeds up computation with a slight performance degradation
reranker = FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True)
score = reranker.compute_score(['query', 'passage'])
# or set "normalize=True" to apply a sigmoid function to the score for 0-1 range
score = reranker.compute_score(['query', 'passage'], normalize=True)
print(score)
**bge-reranker-v2-gemma**
Use the :code:`FlagLLMReranker` class for bge-reranker-v2-gemma.
.. code:: python
from FlagEmbedding import FlagLLMReranker
# Setting use_fp16 to True speeds up computation with a slight performance degradation
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_fp16=True)
score = reranker.compute_score(['query', 'passage'])
print(score)
**bge-reranker-v2-minicpm-layerwise**
Use the :code:`LayerWiseFlagLLMReranker` class for bge-reranker-v2-minicpm-layerwise.
.. code:: python
from FlagEmbedding import LayerWiseFlagLLMReranker
# Setting use_fp16 to True speeds up computation with a slight performance degradation
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_fp16=True)
# Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28])
print(score)
**bge-reranker-v2.5-gemma2-lightweight**
Use the :code:`LightWeightFlagLLMReranker` class for bge-reranker-v2.5-gemma2-lightweight.
.. code:: python
from FlagEmbedding import LightWeightFlagLLMReranker
# Setting use_fp16 to True speeds up computation with a slight performance degradation
reranker = LightWeightFlagLLMReranker('BAAI/bge-reranker-v2.5-gemma2-lightweight', use_fp16=True)
# Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28], compress_ratio=2, compress_layer=[24, 40])
print(score)