52 lines
2.2 KiB
Python
52 lines
2.2 KiB
Python
from sentence_transformers import SentenceTransformer, models
|
|
from transformers.trainer import *
|
|
|
|
|
|
def save_ckpt_for_sentence_transformers(ckpt_dir, pooling_mode: str = 'cls', normlized: bool=True):
|
|
word_embedding_model = models.Transformer(ckpt_dir)
|
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode=pooling_mode)
|
|
if normlized:
|
|
normlize_layer = models.Normalize()
|
|
model = SentenceTransformer(modules=[word_embedding_model, pooling_model, normlize_layer], device='cpu')
|
|
else:
|
|
model = SentenceTransformer(modules=[word_embedding_model, pooling_model], device='cpu')
|
|
model.save(ckpt_dir)
|
|
|
|
|
|
class BiTrainer(Trainer):
|
|
def _save(self, output_dir: Optional[str] = None, state_dict=None):
|
|
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
logger.info("Saving model checkpoint to %s", output_dir)
|
|
# Save a trained model and configuration using `save_pretrained()`.
|
|
# They can then be reloaded using `from_pretrained()`
|
|
if not hasattr(self.model, 'save'):
|
|
raise NotImplementedError(
|
|
f'MODEL {self.model.__class__.__name__} '
|
|
f'does not support save interface')
|
|
else:
|
|
self.model.save(output_dir)
|
|
if self.tokenizer is not None and self.is_world_process_zero():
|
|
self.tokenizer.save_pretrained(output_dir)
|
|
|
|
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
|
|
|
|
# save the checkpoint for sentence-transformers library
|
|
if self.is_world_process_zero():
|
|
save_ckpt_for_sentence_transformers(output_dir,
|
|
pooling_mode=self.args.sentence_pooling_method,
|
|
normlized=self.args.normlized)
|
|
|
|
|
|
def compute_loss(self, model, inputs, return_outputs=False):
|
|
"""
|
|
How the loss is computed by Trainer. By default, all models return the loss in the first element.
|
|
|
|
Subclass and override for custom behavior.
|
|
"""
|
|
|
|
outputs = model(**inputs)
|
|
loss = outputs.loss
|
|
|
|
return (loss, outputs) if return_outputs else loss
|