embed-bge-m3/FlagEmbedding/research/C_MTEB/MKQA/sparse_retrieval/step1-search_results.py

172 lines
6.3 KiB
Python

"""
python step1-search_results.py \
--encoder BAAI/bge-m3 \
--languages ar fi ja ko ru es sv he th da de fr it nl pl pt hu vi ms km no tr zh_cn zh_hk zh_tw \
--encoded_query_and_corpus_save_dir ./encoded_query-and-corpus \
--result_save_dir ./search_results \
--qa_data_dir ../qa_data \
--threads 16 \
--hits 1000
"""
import os
import datasets
from tqdm import tqdm
from pprint import pprint
from dataclasses import dataclass, field
from transformers import HfArgumentParser
@dataclass
class ModelArgs:
encoder: str = field(
default="BAAI/bge-m3",
metadata={'help': 'Name or path of encoder'}
)
@dataclass
class EvalArgs:
languages: str = field(
default="en",
metadata={'help': 'Languages to evaluate. Avaliable languages: en ar fi ja ko ru es sv he th da de fr it nl pl pt hu vi ms km no tr zh_cn zh_hk zh_tw',
"nargs": "+"}
)
encoded_query_and_corpus_save_dir: str = field(
default='./encoded_query-and-corpus',
metadata={'help': 'Dir to save encoded queries and corpus. Encoded queries and corpus are saved in `save_dir/{encoder_name}/{lang}/query_embd.tsv` and `save_dir/{encoder_name}/corpus/corpus_embd.jsonl`, individually.'}
)
result_save_dir: str = field(
default='./search_results',
metadata={'help': 'Dir to saving results. Search results will be saved to `result_save_dir/{encoder_name}/{lang}.txt`'}
)
qa_data_dir: str = field(
default='../qa_data',
metadata={'help': 'Dir to qa data.'}
)
batch_size: int = field(
default=32,
metadata={'help': 'Batch size to use during search'}
)
threads: int = field(
default=1,
metadata={'help': 'Maximum threads to use during search'}
)
hits: int = field(
default=1000,
metadata={'help': 'Number of hits'}
)
overwrite: bool = field(
default=False,
metadata={'help': 'Whether to overwrite embedding'}
)
def check_languages(languages):
if isinstance(languages, str):
languages = [languages]
avaliable_languages = ['en', 'ar', 'fi', 'ja', 'ko', 'ru', 'es', 'sv', 'he', 'th', 'da', 'de', 'fr', 'it', 'nl', 'pl', 'pt', 'hu', 'vi', 'ms', 'km', 'no', 'tr', 'zh_cn', 'zh_hk', 'zh_tw']
for lang in languages:
if lang not in avaliable_languages:
raise ValueError(f"Language `{lang}` is not supported. Avaliable languages: {avaliable_languages}")
return languages
def generate_index(corpus_embd_dir: str, index_save_dir: str, threads: int=12):
cmd = f"python -m pyserini.index.lucene \
--language en \
--collection JsonVectorCollection \
--input {corpus_embd_dir} \
--index {index_save_dir} \
--generator DefaultLuceneDocumentGenerator \
--threads {threads} \
--impact --pretokenized --optimize \
"
os.system(cmd)
def search_and_save_results(index_save_dir: str, query_embd_path: str, result_save_path: str, batch_size: int = 32, threads: int = 12, hits: int = 1000):
cmd = f"python -m pyserini.search.lucene \
--index {index_save_dir} \
--topics {query_embd_path} \
--output {result_save_path} \
--output-format trec \
--batch {batch_size} \
--threads {threads} \
--hits {hits} \
--impact \
"
os.system(cmd)
def parse_corpus(corpus: datasets.Dataset):
corpus_list = [{'id': e['docid'], 'content': f"{e['title']}\n{e['text']}"} for e in tqdm(corpus, desc="Generating corpus")]
corpus = datasets.Dataset.from_list(corpus_list)
return corpus
def main():
parser = HfArgumentParser([ModelArgs, EvalArgs])
model_args, eval_args = parser.parse_args_into_dataclasses()
model_args: ModelArgs
eval_args: EvalArgs
languages = check_languages(eval_args.languages)
if model_args.encoder[-1] == '/':
model_args.encoder = model_args.encoder[:-1]
encoder = model_args.encoder
if os.path.basename(encoder).startswith('checkpoint-'):
encoder = os.path.dirname(encoder) + '_' + os.path.basename(encoder)
print("==================================================")
print("Start generating search results with model:")
print(model_args.encoder)
corpus_embd_dir = os.path.join(eval_args.encoded_query_and_corpus_save_dir, os.path.basename(encoder), 'corpus')
index_save_dir = os.path.join(eval_args.encoded_query_and_corpus_save_dir, os.path.basename(encoder), 'index')
if os.path.exists(index_save_dir) and not eval_args.overwrite:
print(f'Index already exists')
else:
generate_index(
corpus_embd_dir=corpus_embd_dir,
index_save_dir=index_save_dir,
threads=eval_args.threads
)
print('Generate search results of following languages: ', languages)
for lang in languages:
print("**************************************************")
print(f"Start searching results of {lang} ...")
result_save_path = os.path.join(eval_args.result_save_dir, os.path.basename(encoder), f"{lang}.txt")
if not os.path.exists(os.path.dirname(result_save_path)):
os.makedirs(os.path.dirname(result_save_path))
if os.path.exists(result_save_path) and not eval_args.overwrite:
print(f'Search results of {lang} already exists. Skip...')
continue
encoded_query_and_corpus_save_dir = os.path.join(eval_args.encoded_query_and_corpus_save_dir, os.path.basename(encoder), lang)
if not os.path.exists(encoded_query_and_corpus_save_dir):
raise FileNotFoundError(f"{encoded_query_and_corpus_save_dir} not found")
query_embd_path = os.path.join(encoded_query_and_corpus_save_dir, 'query_embd.tsv')
search_and_save_results(
index_save_dir=index_save_dir,
query_embd_path=query_embd_path,
result_save_path=result_save_path,
batch_size=eval_args.batch_size,
threads=eval_args.threads,
hits=eval_args.hits
)
print("==================================================")
print("Finish generating search results with following model:")
pprint(model_args.encoder)
if __name__ == "__main__":
main()