125 lines
4.3 KiB
Python
125 lines
4.3 KiB
Python
import logging
|
|
import os
|
|
from pathlib import Path
|
|
|
|
from transformers import AutoConfig, AutoTokenizer
|
|
from transformers import (
|
|
HfArgumentParser,
|
|
set_seed,
|
|
)
|
|
|
|
from arguments import ModelArguments, DataArguments, \
|
|
RetrieverTrainingArguments as TrainingArguments
|
|
from data import TrainDatasetForEmbedding, EmbedCollator
|
|
from modeling import BiEncoderModel
|
|
from trainer import BiTrainer
|
|
from load_model import get_model
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def main():
|
|
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
model_args: ModelArguments
|
|
data_args: DataArguments
|
|
training_args: TrainingArguments
|
|
|
|
if (
|
|
os.path.exists(training_args.output_dir)
|
|
and os.listdir(training_args.output_dir)
|
|
and training_args.do_train
|
|
and not training_args.overwrite_output_dir
|
|
):
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
|
|
)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
|
|
)
|
|
logger.warning(
|
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
|
training_args.local_rank,
|
|
training_args.device,
|
|
training_args.n_gpu,
|
|
bool(training_args.local_rank != -1),
|
|
training_args.fp16,
|
|
)
|
|
logger.info("Training/evaluation parameters %s", training_args)
|
|
logger.info("Model parameters %s", model_args)
|
|
logger.info("Data parameters %s", data_args)
|
|
|
|
# Set seed
|
|
set_seed(training_args.seed)
|
|
|
|
num_labels = 1
|
|
base_model = get_model(model_args)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
|
token=model_args.token,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=False,
|
|
# add_eos_token=True
|
|
)
|
|
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.unk_token
|
|
tokenizer.padding_side = 'left'
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
|
num_labels=num_labels,
|
|
cache_dir=model_args.cache_dir,
|
|
token=model_args.token,
|
|
)
|
|
logger.info('Config: %s', config)
|
|
|
|
model = BiEncoderModel(model=base_model,
|
|
tokenizer=tokenizer,
|
|
normlized=training_args.normlized,
|
|
negatives_cross_device=training_args.negatives_cross_device,
|
|
temperature=training_args.temperature,
|
|
sub_batch_size=training_args.sub_batch_size)
|
|
# model.gradient_checkpointing_enable()
|
|
# print(tokenizer('slalala', return_tensors='pt').to('cuda'))
|
|
# print(base_model(**(tokenizer('slalala', return_tensors='pt'))))
|
|
# print(base_model(**(tokenizer('slalala', return_tensors='pt').to('cuda'))))
|
|
|
|
if training_args.gradient_checkpointing:
|
|
model.enable_input_require_grads()
|
|
|
|
train_dataset = TrainDatasetForEmbedding(args=data_args, tokenizer=tokenizer)
|
|
|
|
trainer = BiTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=train_dataset,
|
|
data_collator=EmbedCollator(
|
|
tokenizer=tokenizer,
|
|
query_max_len=data_args.query_max_len,
|
|
passage_max_len=data_args.passage_max_len,
|
|
pad_to_multiple_of=8,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
sub_batch_size=training_args.sub_batch_size
|
|
),
|
|
tokenizer=tokenizer
|
|
)
|
|
|
|
Path(training_args.output_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
# Training
|
|
trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
|
trainer.save_model()
|
|
# For convenience, we also re-save the tokenizer to the same directory,
|
|
# so that you can share your model easily on huggingface.co/models =)
|
|
if trainer.is_world_process_zero():
|
|
tokenizer.save_pretrained(training_args.output_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |