embed-bge-m3/FlagEmbedding/research/LLARA/finetune/run.py

125 lines
4.3 KiB
Python

import logging
import os
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer
from transformers import (
HfArgumentParser,
set_seed,
)
from arguments import ModelArguments, DataArguments, \
RetrieverTrainingArguments as TrainingArguments
from data import TrainDatasetForEmbedding, EmbedCollator
from modeling import BiEncoderModel
from trainer import BiTrainer
from load_model import get_model
logger = logging.getLogger(__name__)
def main():
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model_args: ModelArguments
data_args: DataArguments
training_args: TrainingArguments
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
logger.info("Model parameters %s", model_args)
logger.info("Data parameters %s", data_args)
# Set seed
set_seed(training_args.seed)
num_labels = 1
base_model = get_model(model_args)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
token=model_args.token,
cache_dir=model_args.cache_dir,
use_fast=False,
# add_eos_token=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.unk_token
tokenizer.padding_side = 'left'
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
cache_dir=model_args.cache_dir,
token=model_args.token,
)
logger.info('Config: %s', config)
model = BiEncoderModel(model=base_model,
tokenizer=tokenizer,
normlized=training_args.normlized,
negatives_cross_device=training_args.negatives_cross_device,
temperature=training_args.temperature,
sub_batch_size=training_args.sub_batch_size)
# model.gradient_checkpointing_enable()
# print(tokenizer('slalala', return_tensors='pt').to('cuda'))
# print(base_model(**(tokenizer('slalala', return_tensors='pt'))))
# print(base_model(**(tokenizer('slalala', return_tensors='pt').to('cuda'))))
if training_args.gradient_checkpointing:
model.enable_input_require_grads()
train_dataset = TrainDatasetForEmbedding(args=data_args, tokenizer=tokenizer)
trainer = BiTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=EmbedCollator(
tokenizer=tokenizer,
query_max_len=data_args.query_max_len,
passage_max_len=data_args.passage_max_len,
pad_to_multiple_of=8,
return_tensors="pt",
padding=True,
sub_batch_size=training_args.sub_batch_size
),
tokenizer=tokenizer
)
Path(training_args.output_dir).mkdir(parents=True, exist_ok=True)
# Training
trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
main()