embed-bge-m3/FlagEmbedding/research/LLARA/finetune/trainer.py

38 lines
1.6 KiB
Python

from transformers.trainer import *
class BiTrainer(Trainer):
def _save(self, output_dir: Optional[str] = None, state_dict=None):
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info("Saving model checkpoint to %s", output_dir)
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
if not hasattr(self.model, 'save'):
raise NotImplementedError(
f'MODEL {self.model.__class__.__name__} '
f'does not support save interface')
else:
self.model.save(output_dir)
# if self.tokenizer is not None and self.is_world_process_zero():
# self.tokenizer.save_pretrained(output_dir)
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
# save the checkpoint for sentence-transformers library
# if self.is_world_process_zero():
# save_ckpt_for_sentence_transformers(output_dir,
# pooling_mode=self.args.sentence_pooling_method,
# normlized=self.args.normlized)
def compute_loss(self, model, inputs, return_outputs=False):
"""
How the loss is computed by Trainer. By default, all models return the loss in the first element.
Subclass and override for custom behavior.
"""
outputs = model(**inputs)
loss = outputs.loss
return (loss, outputs) if return_outputs else loss