embed-bge-m3/FlagEmbedding/research/Reinforced_IR/inference/ir_model.py

135 lines
5.4 KiB
Python

import os
from typing import List, Union, Optional
from FlagEmbedding.inference.embedder.model_mapping import (
EmbedderModelClass,
AUTO_EMBEDDER_MAPPING, EMBEDDER_CLASS_MAPPING
)
from FlagEmbedding import FlagAutoModel
from agent import GPTAgent, LLMAgent, LLMInstructAgent
prompt_template = """\
Given a retrieval task and a query, your mission is to generate a brief {answer_type} for the query in the context of the retrieval task.
Please generate without any explanation.
Task: {task}
Query: {query}
Your output:"""
class Reinforced_IR_Model():
def __init__(
self,
model_name_or_path: str,
model_class: Optional[Union[str, EmbedderModelClass]] = None,
normalize_embeddings: bool = True,
use_fp16: bool = True,
query_instruction_for_retrieval: Optional[str] = None,
devices: Optional[Union[str, List[str]]] = None,
pooling_method: Optional[str] = None,
trust_remote_code: Optional[bool] = None,
query_instruction_format: Optional[str] = None,
generator_model_name_or_path: Optional[str] = None,
temperature: float = 1.0,
gpu_memory_utilization: float = 0.5,
tensor_parallel_size: int = None,
top_p: float = 1.0,
max_tokens: int = 300,
api_key: Optional[str] = None,
base_url: Optional[str] = None,
model_type: str = "llm_instruct",
**kwargs,
):
self.model_name_or_path = model_name_or_path
self.model_class = model_class
self.normalize_embeddings = normalize_embeddings
self.use_fp16 = use_fp16
self.query_instruction_for_retrieval = query_instruction_for_retrieval
self.devices = devices
self.pooling_method = pooling_method
self.trust_remote_code = trust_remote_code
self.query_instruction_format = query_instruction_format
self.generator_model_name_or_path = generator_model_name_or_path
self.temperature = temperature
self.gpu_memory_utilization = gpu_memory_utilization
self.tensor_parallel_size = tensor_parallel_size
self.top_p = top_p
self.max_tokens = max_tokens
self.model_type = model_type
self.api_key = api_key
self.base_url = base_url
self.kwargs = kwargs
self.generator = None
self.retriever = None
def load_retriever(self):
if self.retriever is None:
self.retriever = FlagAutoModel.from_finetuned(
model_name_or_path=self.model_name_or_path,
model_class=self.model_class,
normalize_embeddings=self.normalize_embeddings,
use_fp16=self.use_fp16,
query_instruction_for_retrieval=self.query_instruction_for_retrieval,
devices=self.devices,
pooling_method=self.pooling_method,
trust_remote_code=self.trust_remote_code,
query_instruction_format=self.query_instruction_format,
**self.kwargs,
)
self.offload_generator()
def load_generator(self):
if self.generator_model_name_or_path is not None:
self.offload_retriever()
if self.generator is None and self.generator_model_name_or_path is not None:
if self.model_type == 'llm':
self.generator = LLMAgent(model_name=self.generator_model_name_or_path,
gpu_memory_utilization=self.gpu_memory_utilization,
tensor_parallel_size=self.tensor_parallel_size)
elif self.model_type == 'llm_instruct':
self.generator = LLMInstructAgent(generate_model_path=self.generator_model_name_or_path,
gpu_memory_utilization=self.gpu_memory_utilization,
tensor_parallel_size=self.tensor_parallel_size)
else:
self.generator = GPTAgent(model_name=self.generator_model_name_or_path,
api_key=self.api_key,
base_url=self.base_url)
def offload_retriever(self):
if self.retriever is not None:
del self.retriever
self.retriever = None
def offload_generator(self):
if self.generator is not None:
del self.generator
self.generator = None
def encode_queries(self, task_instruction, answer_type, queries, **kwargs):
prompts = [prompt_template.format(
answer_type=answer_type,
task=task_instruction,
query=query
) for query in queries]
self.load_generator()
if self.generator is not None:
augmented_queries = self.generator.generate(prompts, **kwargs)
print(augmented_queries)
augmented_queries = ['Generate the topic about this passage: ' + e for e in augmented_queries]
self.load_retriever()
if self.generator is not None:
return self.retriever.encode_corpus(augmented_queries, **kwargs) * 0.2 + \
self.retriever.encode_queries(queries, **kwargs) * 0.8
return self.retriever.encode_queries(queries, **kwargs)
def encode_corpus(self, corpus, **kwargs):
self.load_retriever()
return self.retriever.encode_corpus(corpus, **kwargs)
def encode(self, corpus, **kwargs):
self.load_retriever()
return self.retriever.encode(corpus, **kwargs)