embed-bge-m3/FlagEmbedding/research/baai_general_embedding/retromae_pretrain/utils.py

33 lines
1.2 KiB
Python

from typing import List
import torch
def tensorize_batch(sequences: List[torch.Tensor], padding_value, align_right=False) -> torch.Tensor:
if len(sequences[0].size()) == 1:
max_len_1 = max([s.size(0) for s in sequences])
out_dims = (len(sequences), max_len_1)
out_tensor = sequences[0].new_full(out_dims, padding_value)
for i, tensor in enumerate(sequences):
length_1 = tensor.size(0)
if align_right:
out_tensor[i, -length_1:] = tensor
else:
out_tensor[i, :length_1] = tensor
return out_tensor
elif len(sequences[0].size()) == 2:
max_len_1 = max([s.size(0) for s in sequences])
max_len_2 = max([s.size(1) for s in sequences])
out_dims = (len(sequences), max_len_1, max_len_2)
out_tensor = sequences[0].new_full(out_dims, padding_value)
for i, tensor in enumerate(sequences):
length_1 = tensor.size(0)
length_2 = tensor.size(1)
if align_right:
out_tensor[i, -length_1:, :length_2] = tensor
else:
out_tensor[i, :length_1, :length_2] = tensor
return out_tensor
else:
raise