embed-bge-m3/FlagEmbedding/research/llm_reranker/merge/merge_base_model.py

31 lines
1.5 KiB
Python

from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
def merge_llm(model_name_or_path, lora_name_or_path, save_path, cache_dir: str = None, token: str = None):
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
cache_dir=cache_dir,
token=token,
trust_remote_code=True)
model = PeftModel.from_pretrained(model, lora_name_or_path)
model = model.merge_and_unload()
model.save_pretrained(save_path)
try:
tokenizer = AutoTokenizer.from_pretrained(lora_name_or_path)
except:
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,
cache_dir=cache_dir,
token=token,
trust_remote_code=True)
if tokenizer.pad_token_id is None:
if tokenizer.unk_token_id is not None:
tokenizer.pad_token_id = tokenizer.unk_token_id
elif tokenizer.eod_id is not None:
tokenizer.pad_token_id = tokenizer.eod_id
tokenizer.bos_token_id = tokenizer.im_start_id
tokenizer.eos_token_id = tokenizer.im_end_id
if 'mistral' in model_name_or_path.lower():
tokenizer.padding_side = 'left'
tokenizer.save_pretrained(save_path)