# Large Language Model This framework supports multiple-choice questions and question-answering questions, with two predefined dataset formats. The usage process is as follows: ## Multiple-Choice Question Format (MCQ) Suitable for scenarios where users need multiple-choice questions. The evaluation metric is accuracy. ### 1. Data Preparation Prepare a CSV file in the multiple-choice question format. The directory structure is as follows: ```text mcq/ ├── example_dev.csv # (Optional) Filename should be `{subset_name}_dev.csv`, used for few-shot evaluation └── example_val.csv # Filename should be `{subset_name}_val.csv`, used for actual evaluation data ``` The CSV file needs to be in the following format: ```text id,question,A,B,C,D,answer 1,The amino acids that make up animal proteins typically include ____,4 types,22 types,20 types,19 types,C 2,Among the following substances present in the blood, which is not a metabolic end product?____,urea,uric acid,pyruvic acid,carbon dioxide,C ``` Where: - `id` is the sequence number (optional) - `question` is the question - `A`, `B`, `C`, `D`, etc., are the options, with a maximum of 10 options supported - `answer` is the correct option ### 2. Configuration Task Run the following code to start the evaluation: ```python from evalscope import TaskConfig, run_task task_cfg = TaskConfig( model='Qwen/Qwen2-0.5B-Instruct', datasets=['general_mcq'], # Data format, fixed as 'general_mcq' for multiple-choice format dataset_args={ 'general_mcq': { "local_path": "custom_eval/text/mcq", # Custom dataset path "subset_list": [ "example" # Evaluation dataset name, mentioned subset_name ] } }, ) run_task(task_cfg=task_cfg) ``` Results: ```text +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Model | Dataset | Metric | Subset | Num | Score | Cat.0 | +=====================+=============+=================+==========+=======+=========+=========+ | Qwen2-0.5B-Instruct | general_mcq | AverageAccuracy | example | 12 | 0.5833 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ ``` ## Question-Answering Format (QA) Suitable for scenarios where users need question-answering questions. The evaluation metrics are `ROUGE` and `BLEU`. ### 1. Data Preparation Prepare a JSON lines file for the question-answering format. The directory contains a single file: ```text qa/ └── example.jsonl ``` The JSON lines file needs to be in the following format: ```json {"system": "You are a geographer", "query": "What is the capital of China?", "response": "The capital of China is Beijing"} {"query": "What is the highest mountain in the world?", "response": "It's Mount Everest"} {"query": "Why can't penguins be seen in the Arctic?", "response": "Because penguins mostly live in Antarctica"} ``` Where: - `system` is the system prompt (optional field) - `query` is the question (required) - `response` is the correct answer (required) ### 2. Configuration Task Run the following code to start the evaluation: ```python from evalscope import TaskConfig, run_task task_cfg = TaskConfig( model='qwen/Qwen2-0.5B-Instruct', datasets=['general_qa'], # Data format, fixed as 'general_qa' for question-answering format dataset_args={ 'general_qa': { "local_path": "custom_eval/text/qa", # Custom dataset path "subset_list": [ "example" # Evaluation dataset name, corresponding to * in the above *.jsonl ] } }, ) run_task(task_cfg=task_cfg) ``` Results: ```text +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Model | Dataset | Metric | Subset | Num | Score | Cat.0 | +=====================+=============+=================+==========+=======+=========+=========+ | Qwen2-0.5B-Instruct | general_qa | bleu-1 | example | 12 | 0.2324 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | bleu-2 | example | 12 | 0.1451 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | bleu-3 | example | 12 | 0.0625 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | bleu-4 | example | 12 | 0.0556 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-1-f | example | 12 | 0.3441 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-1-p | example | 12 | 0.2393 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-1-r | example | 12 | 0.8889 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-2-f | example | 12 | 0.2062 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-2-p | example | 12 | 0.1453 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-2-r | example | 12 | 0.6167 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-l-f | example | 12 | 0.333 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-l-p | example | 12 | 0.2324 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ | Qwen2-0.5B-Instruct | general_qa | rouge-l-r | example | 12 | 0.8889 | default | +---------------------+-------------+-----------------+----------+-------+---------+---------+ ```