This commit is contained in:
parent
26f397efc7
commit
b42fec3418
240
gradio_ui.py
240
gradio_ui.py
|
|
@ -11,8 +11,17 @@ import signal
|
|||
current_process = None
|
||||
should_stop = False
|
||||
|
||||
# ---------------- 核心运行函数 ----------------
|
||||
def run_eval(
|
||||
# ---------------- 可选数据集 ----------------
|
||||
EVAL_DATASETS = [
|
||||
"arc", "bbh", "ceval", "cmmlu", "competition_math", "gsm8k",
|
||||
"hellaswag", "humaneval", "mmlu", "mmlu_pro", "race",
|
||||
"trivia_qa", "truthful_qa"
|
||||
]
|
||||
|
||||
PERF_DATASETS = ["openqa", "flickr8k", "longalpaca", "random_dataset", "line_by_line", "custom", "speed_benchmark"]
|
||||
|
||||
# ---------------- perf 模式运行 ----------------
|
||||
def run_perf(
|
||||
inputs, native, other, output_choices,
|
||||
api_url, api_token,
|
||||
api_provider, dataset,
|
||||
|
|
@ -86,8 +95,7 @@ def run_eval(
|
|||
threading.Thread(
|
||||
target=subprocess.Popen,
|
||||
args=(vis_cmd,),
|
||||
kwargs={"stdout": subprocess.DEVNULL,
|
||||
"stderr": subprocess.STDOUT},
|
||||
kwargs={"stdout": subprocess.DEVNULL, "stderr": subprocess.STDOUT},
|
||||
daemon=True
|
||||
).start()
|
||||
|
||||
|
|
@ -95,6 +103,88 @@ def run_eval(
|
|||
|
||||
yield full_output, False, gr.update(value="Run Evaluation")
|
||||
|
||||
# ---------------- eval 模式运行 ----------------
|
||||
def run_eval_tool(
|
||||
inputs, native, other, output_choices,
|
||||
api_url, api_token,
|
||||
api_provider, dataset,
|
||||
max_tokens, min_tokens, parallel_reqs,
|
||||
max_prompt_len, num_requests,
|
||||
model_override
|
||||
):
|
||||
global current_process
|
||||
|
||||
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
||||
model_name = model_override.strip() or timestamp
|
||||
|
||||
command = [
|
||||
"evalscope", "eval",
|
||||
"--model", model_name,
|
||||
"--datasets", dataset
|
||||
]
|
||||
if api_url.strip():
|
||||
command += [
|
||||
"--eval-type", "service",
|
||||
"--api-url", api_url.strip(),
|
||||
"--api-key", api_token.strip()
|
||||
]
|
||||
if num_requests:
|
||||
command += ["--limit", str(int(num_requests))]
|
||||
|
||||
full_output = f"[Eval Started @ {timestamp}]\nCmd: {' '.join(command)}\n"
|
||||
yield full_output, True, gr.update(value="Stop Evaluation")
|
||||
|
||||
try:
|
||||
current_process = subprocess.Popen(
|
||||
command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
|
||||
text=True, bufsize=1, start_new_session=True
|
||||
)
|
||||
|
||||
for line in current_process.stdout:
|
||||
if should_stop:
|
||||
break
|
||||
full_output += line
|
||||
yield full_output, True, gr.update(value="Stop Evaluation")
|
||||
|
||||
current_process.stdout.close()
|
||||
current_process.wait()
|
||||
|
||||
except Exception as e:
|
||||
full_output += f"[Error] {e}\n"
|
||||
yield full_output, False, gr.update(value="Run Evaluation")
|
||||
|
||||
finally:
|
||||
current_process = None
|
||||
|
||||
full_output += "[Eval Finished]\n"
|
||||
|
||||
if "Evaluation Report" in output_choices:
|
||||
vis_port = 7901
|
||||
outputs_root = "./outputs"
|
||||
try:
|
||||
latest_output = max(
|
||||
glob.glob(os.path.join(outputs_root, "*")),
|
||||
key=os.path.getmtime
|
||||
)
|
||||
except ValueError:
|
||||
latest_output = outputs_root
|
||||
|
||||
vis_cmd = [
|
||||
"evalscope", "app",
|
||||
"--outputs", outputs_root,
|
||||
"--server-name", "0.0.0.0",
|
||||
"--server-port", str(vis_port),
|
||||
]
|
||||
threading.Thread(
|
||||
target=subprocess.Popen,
|
||||
args=(vis_cmd,),
|
||||
kwargs={"stdout": subprocess.DEVNULL, "stderr": subprocess.STDOUT},
|
||||
daemon=True
|
||||
).start()
|
||||
|
||||
full_output += f"[Visualization 👉] http://localhost:{vis_port}\n"
|
||||
|
||||
yield full_output, False, gr.update(value="Run Evaluation")
|
||||
|
||||
# ---------------- 停止函数 ----------------
|
||||
def stop_eval():
|
||||
|
|
@ -104,10 +194,10 @@ def stop_eval():
|
|||
if current_process and current_process.poll() is None:
|
||||
try:
|
||||
pgid = os.getpgid(current_process.pid)
|
||||
os.killpg(pgid, signal.SIGINT) # ✅ 优雅终止
|
||||
os.killpg(pgid, signal.SIGINT)
|
||||
time.sleep(2)
|
||||
if current_process.poll() is None:
|
||||
os.killpg(pgid, signal.SIGKILL) # ❗ 强制终止
|
||||
os.killpg(pgid, signal.SIGKILL)
|
||||
return "[✅ 已发送终止信号 (SIGINT → SIGKILL fallback)]\n"
|
||||
except Exception as e:
|
||||
return f"[❌ 终止失败: {e}]\n"
|
||||
|
|
@ -116,9 +206,7 @@ def stop_eval():
|
|||
else:
|
||||
return "[⚠️ 无活动 evalscope 进程]\n"
|
||||
|
||||
|
||||
|
||||
# ---------------- Run/Stop 控制器 ----------------
|
||||
# ---------------- 控制器 ----------------
|
||||
def toggle_run(
|
||||
inputs, native, other, output_choices,
|
||||
api_url, api_token,
|
||||
|
|
@ -126,7 +214,8 @@ def toggle_run(
|
|||
max_tokens, min_tokens, parallel_reqs,
|
||||
max_prompt_len, num_requests,
|
||||
model_override,
|
||||
is_running
|
||||
is_running,
|
||||
run_mode
|
||||
):
|
||||
global should_stop
|
||||
|
||||
|
|
@ -137,20 +226,17 @@ def toggle_run(
|
|||
|
||||
if not is_running:
|
||||
should_stop = False
|
||||
yield from run_eval(
|
||||
inputs, native, other, output_choices,
|
||||
api_url, api_token,
|
||||
api_provider, dataset,
|
||||
max_tokens, min_tokens, parallel_reqs,
|
||||
max_prompt_len, num_requests,
|
||||
model_override
|
||||
)
|
||||
if run_mode == "perf":
|
||||
yield from run_perf(...)
|
||||
elif run_mode == "eval":
|
||||
yield from run_eval_tool(...)
|
||||
elif run_mode == "app":
|
||||
yield "[⚠️ 当前为 app 模式,请手动打开 http://localhost:7901 查看报告]", False, gr.update(value="Run Evaluation")
|
||||
else:
|
||||
msg = stop_eval()
|
||||
yield msg, False, gr.update(value="Run Evaluation")
|
||||
|
||||
|
||||
# ---------------- 互斥逻辑 ----------------
|
||||
# ---------------- 输入源互斥逻辑 ----------------
|
||||
def enforce_input_exclusive_and_toggle_fields(selected):
|
||||
order = ["API Models", "Local Models", "Benchmarks", "Custom Datasets"]
|
||||
group1 = {"API Models", "Local Models"}
|
||||
|
|
@ -167,20 +253,23 @@ def enforce_input_exclusive_and_toggle_fields(selected):
|
|||
final_sel |= set(keep_only_one(group2))
|
||||
|
||||
final_list = [itm for itm in order if itm in final_sel]
|
||||
|
||||
input_update = gr.update() if list(selected) == final_list else gr.update(value=final_list)
|
||||
|
||||
show_api_fields = "API Models" in final_sel
|
||||
api_field_update = gr.update(visible=show_api_fields) # ✅ 正确
|
||||
|
||||
api_field_update = gr.update(visible="API Models" in final_sel)
|
||||
return input_update, api_field_update
|
||||
|
||||
|
||||
# ---------------- 构建 Gradio UI ----------------
|
||||
# ---------------- UI 构建 ----------------
|
||||
with gr.Blocks(title="EvalScope 全功能界面") as demo:
|
||||
is_running = gr.State(value=False)
|
||||
|
||||
# ===== 输入源 =====
|
||||
with gr.Group():
|
||||
with gr.Row():
|
||||
mode_dropdown = gr.Dropdown(
|
||||
label="评测类型",
|
||||
choices=["eval", "perf", "app"],
|
||||
value="perf",
|
||||
info="eval: 智力评测;perf: 性能评测;app: 可视化"
|
||||
)
|
||||
|
||||
with gr.Group():
|
||||
with gr.Row():
|
||||
input_choices = gr.CheckboxGroup(
|
||||
|
|
@ -189,89 +278,45 @@ with gr.Blocks(title="EvalScope 全功能界面") as demo:
|
|||
interactive=True
|
||||
)
|
||||
|
||||
# ===== API 地址 & 运行参数(统一控制显示) =====
|
||||
with gr.Column(visible=False) as api_fields:
|
||||
api_url_input = gr.Textbox(
|
||||
label="API 地址",
|
||||
placeholder="https://ai.aiszaiai.com/v1/chat/completions"
|
||||
)
|
||||
api_token_input = gr.Textbox(
|
||||
label="Token 密钥",
|
||||
type="password",
|
||||
placeholder="sk-xxx"
|
||||
)
|
||||
api_url_input = gr.Textbox(label="API 地址", placeholder="https://.../v1/chat/completions")
|
||||
api_token_input = gr.Textbox(label="Token 密钥", type="password", placeholder="sk-xxx")
|
||||
with gr.Accordion("运行参数(可选修改)", open=False):
|
||||
with gr.Row():
|
||||
api_provider_dropdown = gr.Dropdown(
|
||||
label="API Provider (--api)",
|
||||
choices=["openai", "azure", "ollama", "gemini"],
|
||||
value="openai"
|
||||
)
|
||||
dataset_dropdown = gr.Dropdown(
|
||||
label="评测数据集 (--dataset)",
|
||||
choices=["openqa", "flickr8k", "longalpaca", "random_dataset", "line_by_line", "custom", "speed_benchmark"],
|
||||
value="openqa"
|
||||
)
|
||||
model_override_input = gr.Textbox(
|
||||
label="自定义模型名 (--model),留空则使用时间戳",
|
||||
placeholder="e.g. my-llm-7b"
|
||||
)
|
||||
api_provider_dropdown = gr.Dropdown(label="API Provider", choices=["openai", "azure", "ollama", "gemini"], value="openai")
|
||||
dataset_dropdown = gr.Dropdown(label="评测数据集 (--dataset)", choices=PERF_DATASETS, value=PERF_DATASETS[0])
|
||||
model_override_input = gr.Textbox(label="自定义模型名 (--model)", placeholder="my-llm")
|
||||
with gr.Row():
|
||||
max_tokens_slider = gr.Slider(
|
||||
label="Max Tokens (--max-tokens)",
|
||||
minimum=256, maximum=8192, step=256, value=1024
|
||||
)
|
||||
min_tokens_slider = gr.Slider(
|
||||
label="Min Tokens (--min-tokens)",
|
||||
minimum=0, maximum=4096, step=64, value=1024
|
||||
)
|
||||
max_tokens_slider = gr.Slider(label="Max Tokens", minimum=256, maximum=8192, step=256, value=1024)
|
||||
min_tokens_slider = gr.Slider(label="Min Tokens", minimum=0, maximum=4096, step=64, value=1024)
|
||||
with gr.Row():
|
||||
parallel_slider = gr.Slider(
|
||||
label="并发请求数 (--parallel)",
|
||||
minimum=1, maximum=16, step=1, value=1
|
||||
)
|
||||
num_req_slider = gr.Slider(
|
||||
label="请求条数 (--number)",
|
||||
minimum=1, maximum=1000, step=1, value=100
|
||||
)
|
||||
max_prompt_len_slider = gr.Slider(
|
||||
label="最大 Prompt 长度 (--max-prompt-length)",
|
||||
minimum=2048, maximum=32768, step=512, value=15360
|
||||
)
|
||||
parallel_slider = gr.Slider(label="并发请求数", minimum=1, maximum=16, step=1, value=1)
|
||||
num_req_slider = gr.Slider(label="请求条数", minimum=1, maximum=1000, step=1, value=100)
|
||||
max_prompt_len_slider = gr.Slider(label="最大 Prompt 长度", minimum=2048, maximum=32768, step=512, value=15360)
|
||||
|
||||
# ===== 本地/外部组件 =====
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
native_choices = gr.CheckboxGroup(
|
||||
label="启用本地模块",
|
||||
choices=["Model Adapter", "Data Adapter", "Evaluator", "Perf Monitor"]
|
||||
)
|
||||
native_choices = gr.CheckboxGroup(label="启用本地模块", choices=["Model Adapter", "Data Adapter", "Evaluator", "Perf Monitor"])
|
||||
with gr.Column():
|
||||
other_choices = gr.CheckboxGroup(
|
||||
label="启用外部后端",
|
||||
choices=["OpenCompass", "VLMEvalKit", "RAGAS", "MTEB/CMTEB"]
|
||||
)
|
||||
other_choices = gr.CheckboxGroup(label="启用外部后端", choices=["OpenCompass", "VLMEvalKit", "RAGAS", "MTEB/CMTEB"])
|
||||
|
||||
# ===== 输出形式 =====
|
||||
output_choices = gr.CheckboxGroup(
|
||||
label="输出形式",
|
||||
choices=["Evaluation Report", "Gradio", "WandB", "Swanlab"]
|
||||
)
|
||||
|
||||
# ===== 控制按钮 & 日志 =====
|
||||
output_choices = gr.CheckboxGroup(label="输出形式", choices=["Evaluation Report", "Gradio", "WandB", "Swanlab"])
|
||||
run_button = gr.Button("Run Evaluation")
|
||||
output_text = gr.TextArea(
|
||||
label="执行结果",
|
||||
lines=20,
|
||||
interactive=False,
|
||||
show_copy_button=True
|
||||
)
|
||||
output_text = gr.TextArea(label="执行结果", lines=20, interactive=False, show_copy_button=True)
|
||||
|
||||
# ===== 绑定事件 =====
|
||||
input_choices.change(
|
||||
fn=enforce_input_exclusive_and_toggle_fields,
|
||||
inputs=input_choices,
|
||||
outputs=[input_choices, api_fields] # ✅ 只输出这两个
|
||||
outputs=[input_choices, api_fields]
|
||||
)
|
||||
|
||||
mode_dropdown.change(
|
||||
lambda mode: gr.update(
|
||||
choices=EVAL_DATASETS if mode == "eval" else PERF_DATASETS,
|
||||
value=EVAL_DATASETS[0] if mode == "eval" else PERF_DATASETS[0]
|
||||
),
|
||||
inputs=mode_dropdown,
|
||||
outputs=dataset_dropdown
|
||||
)
|
||||
|
||||
run_button.click(
|
||||
|
|
@ -284,7 +329,8 @@ with gr.Blocks(title="EvalScope 全功能界面") as demo:
|
|||
max_tokens_slider, min_tokens_slider, parallel_slider,
|
||||
max_prompt_len_slider, num_req_slider,
|
||||
model_override_input,
|
||||
is_running
|
||||
is_running,
|
||||
mode_dropdown
|
||||
],
|
||||
outputs=[output_text, is_running, run_button],
|
||||
show_progress=True
|
||||
|
|
|
|||
|
|
@ -0,0 +1,402 @@
|
|||
import time
|
||||
import os
|
||||
import glob
|
||||
import threading
|
||||
import subprocess
|
||||
import gradio as gr
|
||||
import psutil
|
||||
import signal
|
||||
|
||||
# ---------------- 全局进程句柄 ----------------
|
||||
current_process = None
|
||||
should_stop = False
|
||||
|
||||
# ---------------- 核心运行函数 ----------------
|
||||
def run_perf(
|
||||
inputs, native, other, output_choices,
|
||||
api_url, api_token,
|
||||
api_provider, dataset,
|
||||
max_tokens, min_tokens, parallel_reqs,
|
||||
max_prompt_len, num_requests,
|
||||
model_override
|
||||
):
|
||||
global current_process
|
||||
|
||||
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
||||
model_name = model_override.strip() or timestamp
|
||||
|
||||
command = [
|
||||
"evalscope", "perf",
|
||||
"--url", api_url.strip(),
|
||||
"--api", api_provider,
|
||||
"--model", model_name,
|
||||
"--dataset", dataset,
|
||||
"--max-tokens", str(int(max_tokens)),
|
||||
"--min-tokens", str(int(min_tokens)),
|
||||
"--parallel", str(int(parallel_reqs)),
|
||||
"--max-prompt-length", str(int(max_prompt_len)),
|
||||
"--number", str(int(num_requests)),
|
||||
"--api-key", api_token.strip(),
|
||||
]
|
||||
|
||||
full_output = f"[Eval Started @ {timestamp}]\nCmd: {' '.join(command)}\n"
|
||||
yield full_output, True, gr.update(value="Stop Evaluation")
|
||||
|
||||
try:
|
||||
current_process = subprocess.Popen(
|
||||
command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
|
||||
text=True, bufsize=1, start_new_session=True
|
||||
)
|
||||
|
||||
for line in current_process.stdout:
|
||||
if should_stop:
|
||||
break
|
||||
full_output += line
|
||||
yield full_output, True, gr.update(value="Stop Evaluation")
|
||||
|
||||
current_process.stdout.close()
|
||||
current_process.wait()
|
||||
|
||||
except Exception as e:
|
||||
full_output += f"[Error] {e}\n"
|
||||
yield full_output, False, gr.update(value="Run Evaluation")
|
||||
|
||||
finally:
|
||||
current_process = None
|
||||
|
||||
full_output += "[Eval Finished]\n"
|
||||
|
||||
if "Evaluation Report" in output_choices:
|
||||
vis_port = 7901
|
||||
outputs_root = "./outputs"
|
||||
try:
|
||||
latest_output = max(
|
||||
glob.glob(os.path.join(outputs_root, "*")),
|
||||
key=os.path.getmtime
|
||||
)
|
||||
except ValueError:
|
||||
latest_output = outputs_root
|
||||
|
||||
vis_cmd = [
|
||||
"evalscope", "app",
|
||||
"--outputs", outputs_root,
|
||||
"--server-name", "0.0.0.0",
|
||||
"--server-port", str(vis_port),
|
||||
]
|
||||
threading.Thread(
|
||||
target=subprocess.Popen,
|
||||
args=(vis_cmd,),
|
||||
kwargs={"stdout": subprocess.DEVNULL,
|
||||
"stderr": subprocess.STDOUT},
|
||||
daemon=True
|
||||
).start()
|
||||
|
||||
full_output += f"[Visualization 👉] http://localhost:{vis_port}\n"
|
||||
|
||||
yield full_output, False, gr.update(value="Run Evaluation")
|
||||
|
||||
|
||||
# ---------------- 停止函数 ----------------
|
||||
def stop_eval():
|
||||
global current_process, should_stop
|
||||
should_stop = True
|
||||
|
||||
if current_process and current_process.poll() is None:
|
||||
try:
|
||||
pgid = os.getpgid(current_process.pid)
|
||||
os.killpg(pgid, signal.SIGINT) # ✅ 优雅终止
|
||||
time.sleep(2)
|
||||
if current_process.poll() is None:
|
||||
os.killpg(pgid, signal.SIGKILL) # ❗ 强制终止
|
||||
return "[✅ 已发送终止信号 (SIGINT → SIGKILL fallback)]\n"
|
||||
except Exception as e:
|
||||
return f"[❌ 终止失败: {e}]\n"
|
||||
finally:
|
||||
current_process = None
|
||||
else:
|
||||
return "[⚠️ 无活动 evalscope 进程]\n"
|
||||
|
||||
|
||||
|
||||
# ---------------- Run/Stop 控制器 ----------------
|
||||
def toggle_run(
|
||||
inputs, native, other, output_choices,
|
||||
api_url, api_token,
|
||||
api_provider, dataset,
|
||||
max_tokens, min_tokens, parallel_reqs,
|
||||
max_prompt_len, num_requests,
|
||||
model_override,
|
||||
is_running,
|
||||
run_mode # 👈 增加这个参数
|
||||
):
|
||||
global should_stop
|
||||
|
||||
if not inputs:
|
||||
msg = "[❌ 错误] 必须至少选择一个输入源(API、本地、基准或自定义)才能开始运行。\n"
|
||||
yield msg, False, gr.update(value="Run Evaluation")
|
||||
return
|
||||
|
||||
if not is_running:
|
||||
should_stop = False
|
||||
if run_mode == "perf":
|
||||
yield from run_perf(
|
||||
inputs, native, other, output_choices,
|
||||
api_url, api_token,
|
||||
api_provider, dataset,
|
||||
max_tokens, min_tokens, parallel_reqs,
|
||||
max_prompt_len, num_requests,
|
||||
model_override
|
||||
)
|
||||
elif run_mode == "eval":
|
||||
yield from run_eval_tool(
|
||||
inputs, native, other, output_choices,
|
||||
api_url, api_token,
|
||||
api_provider, dataset,
|
||||
max_tokens, min_tokens, parallel_reqs,
|
||||
max_prompt_len, num_requests,
|
||||
model_override
|
||||
)
|
||||
else:
|
||||
msg = stop_eval()
|
||||
yield msg, False, gr.update(value="Run Evaluation")
|
||||
|
||||
|
||||
# ---------------- 互斥逻辑 ----------------
|
||||
def enforce_input_exclusive_and_toggle_fields(selected):
|
||||
order = ["API Models", "Local Models", "Benchmarks", "Custom Datasets"]
|
||||
group1 = {"API Models", "Local Models"}
|
||||
group2 = {"Benchmarks", "Custom Datasets"}
|
||||
|
||||
def keep_only_one(group):
|
||||
filtered = [item for item in selected if item in group]
|
||||
return filtered[-1:]
|
||||
|
||||
final_sel = set(selected)
|
||||
final_sel -= group1
|
||||
final_sel |= set(keep_only_one(group1))
|
||||
final_sel -= group2
|
||||
final_sel |= set(keep_only_one(group2))
|
||||
|
||||
final_list = [itm for itm in order if itm in final_sel]
|
||||
|
||||
input_update = gr.update() if list(selected) == final_list else gr.update(value=final_list)
|
||||
|
||||
show_api_fields = "API Models" in final_sel
|
||||
api_field_update = gr.update(visible=show_api_fields) # ✅ 正确
|
||||
|
||||
return input_update, api_field_update
|
||||
|
||||
|
||||
|
||||
def run_eval_tool(
|
||||
inputs, native, other, output_choices,
|
||||
api_url, api_token,
|
||||
api_provider, dataset,
|
||||
max_tokens, min_tokens, parallel_reqs,
|
||||
max_prompt_len, num_requests,
|
||||
model_override
|
||||
):
|
||||
global current_process
|
||||
|
||||
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
||||
model_name = model_override.strip() or timestamp
|
||||
|
||||
command = [
|
||||
"evalscope", "eval",
|
||||
"--model", model_name,
|
||||
"--datasets", dataset
|
||||
]
|
||||
if api_url.strip():
|
||||
command += [
|
||||
"--eval-type", "service",
|
||||
"--api-url", api_url.strip(),
|
||||
"--api-key", api_token.strip()
|
||||
]
|
||||
if num_requests:
|
||||
command += ["--limit", str(int(num_requests))]
|
||||
|
||||
full_output = f"[Eval Started @ {timestamp}]\nCmd: {' '.join(command)}\n"
|
||||
yield full_output, True, gr.update(value="Stop Evaluation")
|
||||
|
||||
try:
|
||||
current_process = subprocess.Popen(
|
||||
command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
|
||||
text=True, bufsize=1, start_new_session=True
|
||||
)
|
||||
|
||||
for line in current_process.stdout:
|
||||
if should_stop:
|
||||
break
|
||||
full_output += line
|
||||
yield full_output, True, gr.update(value="Stop Evaluation")
|
||||
|
||||
current_process.stdout.close()
|
||||
current_process.wait()
|
||||
|
||||
except Exception as e:
|
||||
full_output += f"[Error] {e}\n"
|
||||
yield full_output, False, gr.update(value="Run Evaluation")
|
||||
|
||||
finally:
|
||||
current_process = None
|
||||
|
||||
full_output += "[Eval Finished]\n"
|
||||
|
||||
if "Evaluation Report" in output_choices:
|
||||
vis_port = 7901
|
||||
outputs_root = "./outputs"
|
||||
try:
|
||||
latest_output = max(
|
||||
glob.glob(os.path.join(outputs_root, "*")),
|
||||
key=os.path.getmtime
|
||||
)
|
||||
except ValueError:
|
||||
latest_output = outputs_root
|
||||
|
||||
vis_cmd = [
|
||||
"evalscope", "app",
|
||||
"--outputs", outputs_root,
|
||||
"--server-name", "0.0.0.0",
|
||||
"--server-port", str(vis_port),
|
||||
]
|
||||
threading.Thread(
|
||||
target=subprocess.Popen,
|
||||
args=(vis_cmd,),
|
||||
kwargs={"stdout": subprocess.DEVNULL,
|
||||
"stderr": subprocess.STDOUT},
|
||||
daemon=True
|
||||
).start()
|
||||
|
||||
full_output += f"[Visualization 👉] http://localhost:{vis_port}\n"
|
||||
|
||||
yield full_output, False, gr.update(value="Run Evaluation")
|
||||
|
||||
|
||||
|
||||
|
||||
# ---------------- 构建 Gradio UI ----------------
|
||||
with gr.Blocks(title="EvalScope 全功能界面") as demo:
|
||||
is_running = gr.State(value=False)
|
||||
|
||||
with gr.Group():
|
||||
with gr.Row():
|
||||
mode_dropdown = gr.Dropdown(
|
||||
label="评测类型",
|
||||
info="eval: 智力评测;perf: 推理性能;app: Web 可视化",
|
||||
choices=["eval", "perf", "app"],
|
||||
value="perf"
|
||||
)
|
||||
|
||||
# ===== 输入源 =====
|
||||
with gr.Group():
|
||||
with gr.Row():
|
||||
input_choices = gr.CheckboxGroup(
|
||||
label="选择输入源",
|
||||
choices=["API Models", "Local Models", "Benchmarks", "Custom Datasets"],
|
||||
interactive=True
|
||||
)
|
||||
|
||||
# ===== API 地址 & 运行参数(统一控制显示) =====
|
||||
with gr.Column(visible=False) as api_fields:
|
||||
api_url_input = gr.Textbox(
|
||||
label="API 地址",
|
||||
placeholder="https://ai.aiszaiai.com/v1/chat/completions"
|
||||
)
|
||||
api_token_input = gr.Textbox(
|
||||
label="Token 密钥",
|
||||
type="password",
|
||||
placeholder="sk-xxx"
|
||||
)
|
||||
with gr.Accordion("运行参数(可选修改)", open=False):
|
||||
with gr.Row():
|
||||
api_provider_dropdown = gr.Dropdown(
|
||||
label="API Provider (--api)",
|
||||
choices=["openai", "azure", "ollama", "gemini"],
|
||||
value="openai"
|
||||
)
|
||||
dataset_dropdown = gr.Dropdown(
|
||||
label="评测数据集 (--dataset)",
|
||||
choices=["openqa", "flickr8k", "longalpaca", "random_dataset", "line_by_line", "custom", "speed_benchmark"],
|
||||
value="openqa"
|
||||
)
|
||||
model_override_input = gr.Textbox(
|
||||
label="自定义模型名 (--model),留空则使用时间戳",
|
||||
placeholder="e.g. my-llm-7b"
|
||||
)
|
||||
with gr.Row():
|
||||
max_tokens_slider = gr.Slider(
|
||||
label="Max Tokens (--max-tokens)",
|
||||
minimum=256, maximum=8192, step=256, value=1024
|
||||
)
|
||||
min_tokens_slider = gr.Slider(
|
||||
label="Min Tokens (--min-tokens)",
|
||||
minimum=0, maximum=4096, step=64, value=1024
|
||||
)
|
||||
with gr.Row():
|
||||
parallel_slider = gr.Slider(
|
||||
label="并发请求数 (--parallel)",
|
||||
minimum=1, maximum=16, step=1, value=1
|
||||
)
|
||||
num_req_slider = gr.Slider(
|
||||
label="请求条数 (--number)",
|
||||
minimum=1, maximum=1000, step=1, value=100
|
||||
)
|
||||
max_prompt_len_slider = gr.Slider(
|
||||
label="最大 Prompt 长度 (--max-prompt-length)",
|
||||
minimum=2048, maximum=32768, step=512, value=15360
|
||||
)
|
||||
|
||||
# ===== 本地/外部组件 =====
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
native_choices = gr.CheckboxGroup(
|
||||
label="启用本地模块",
|
||||
choices=["Model Adapter", "Data Adapter", "Evaluator", "Perf Monitor"]
|
||||
)
|
||||
with gr.Column():
|
||||
other_choices = gr.CheckboxGroup(
|
||||
label="启用外部后端",
|
||||
choices=["OpenCompass", "VLMEvalKit", "RAGAS", "MTEB/CMTEB"]
|
||||
)
|
||||
|
||||
# ===== 输出形式 =====
|
||||
output_choices = gr.CheckboxGroup(
|
||||
label="输出形式",
|
||||
choices=["Evaluation Report", "Gradio", "WandB", "Swanlab"]
|
||||
)
|
||||
|
||||
# ===== 控制按钮 & 日志 =====
|
||||
run_button = gr.Button("Run Evaluation")
|
||||
output_text = gr.TextArea(
|
||||
label="执行结果",
|
||||
lines=20,
|
||||
interactive=False,
|
||||
show_copy_button=True
|
||||
)
|
||||
|
||||
# ===== 绑定事件 =====
|
||||
input_choices.change(
|
||||
fn=enforce_input_exclusive_and_toggle_fields,
|
||||
inputs=input_choices,
|
||||
outputs=[input_choices, api_fields] # ✅ 只输出这两个
|
||||
)
|
||||
|
||||
run_button.click(
|
||||
fn=toggle_run,
|
||||
inputs=[
|
||||
input_choices, native_choices, other_choices,
|
||||
output_choices,
|
||||
api_url_input, api_token_input,
|
||||
api_provider_dropdown, dataset_dropdown,
|
||||
max_tokens_slider, min_tokens_slider, parallel_slider,
|
||||
max_prompt_len_slider, num_req_slider,
|
||||
model_override_input,
|
||||
is_running,
|
||||
mode_dropdown # ✅ 改为新的变量
|
||||
],
|
||||
outputs=[output_text, is_running, run_button],
|
||||
show_progress=True
|
||||
)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch(server_name="0.0.0.0", server_port=7900)
|
||||
Loading…
Reference in New Issue