This commit is contained in:
hailin 2025-07-09 11:43:09 +08:00
parent 26f397efc7
commit b42fec3418
2 changed files with 545 additions and 97 deletions

View File

@ -11,8 +11,17 @@ import signal
current_process = None
should_stop = False
# ---------------- 核心运行函数 ----------------
def run_eval(
# ---------------- 可选数据集 ----------------
EVAL_DATASETS = [
"arc", "bbh", "ceval", "cmmlu", "competition_math", "gsm8k",
"hellaswag", "humaneval", "mmlu", "mmlu_pro", "race",
"trivia_qa", "truthful_qa"
]
PERF_DATASETS = ["openqa", "flickr8k", "longalpaca", "random_dataset", "line_by_line", "custom", "speed_benchmark"]
# ---------------- perf 模式运行 ----------------
def run_perf(
inputs, native, other, output_choices,
api_url, api_token,
api_provider, dataset,
@ -86,8 +95,7 @@ def run_eval(
threading.Thread(
target=subprocess.Popen,
args=(vis_cmd,),
kwargs={"stdout": subprocess.DEVNULL,
"stderr": subprocess.STDOUT},
kwargs={"stdout": subprocess.DEVNULL, "stderr": subprocess.STDOUT},
daemon=True
).start()
@ -95,6 +103,88 @@ def run_eval(
yield full_output, False, gr.update(value="Run Evaluation")
# ---------------- eval 模式运行 ----------------
def run_eval_tool(
inputs, native, other, output_choices,
api_url, api_token,
api_provider, dataset,
max_tokens, min_tokens, parallel_reqs,
max_prompt_len, num_requests,
model_override
):
global current_process
timestamp = time.strftime("%Y%m%d-%H%M%S")
model_name = model_override.strip() or timestamp
command = [
"evalscope", "eval",
"--model", model_name,
"--datasets", dataset
]
if api_url.strip():
command += [
"--eval-type", "service",
"--api-url", api_url.strip(),
"--api-key", api_token.strip()
]
if num_requests:
command += ["--limit", str(int(num_requests))]
full_output = f"[Eval Started @ {timestamp}]\nCmd: {' '.join(command)}\n"
yield full_output, True, gr.update(value="Stop Evaluation")
try:
current_process = subprocess.Popen(
command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
text=True, bufsize=1, start_new_session=True
)
for line in current_process.stdout:
if should_stop:
break
full_output += line
yield full_output, True, gr.update(value="Stop Evaluation")
current_process.stdout.close()
current_process.wait()
except Exception as e:
full_output += f"[Error] {e}\n"
yield full_output, False, gr.update(value="Run Evaluation")
finally:
current_process = None
full_output += "[Eval Finished]\n"
if "Evaluation Report" in output_choices:
vis_port = 7901
outputs_root = "./outputs"
try:
latest_output = max(
glob.glob(os.path.join(outputs_root, "*")),
key=os.path.getmtime
)
except ValueError:
latest_output = outputs_root
vis_cmd = [
"evalscope", "app",
"--outputs", outputs_root,
"--server-name", "0.0.0.0",
"--server-port", str(vis_port),
]
threading.Thread(
target=subprocess.Popen,
args=(vis_cmd,),
kwargs={"stdout": subprocess.DEVNULL, "stderr": subprocess.STDOUT},
daemon=True
).start()
full_output += f"[Visualization 👉] http://localhost:{vis_port}\n"
yield full_output, False, gr.update(value="Run Evaluation")
# ---------------- 停止函数 ----------------
def stop_eval():
@ -104,10 +194,10 @@ def stop_eval():
if current_process and current_process.poll() is None:
try:
pgid = os.getpgid(current_process.pid)
os.killpg(pgid, signal.SIGINT) # ✅ 优雅终止
os.killpg(pgid, signal.SIGINT)
time.sleep(2)
if current_process.poll() is None:
os.killpg(pgid, signal.SIGKILL) # ❗ 强制终止
os.killpg(pgid, signal.SIGKILL)
return "[✅ 已发送终止信号 (SIGINT → SIGKILL fallback)]\n"
except Exception as e:
return f"[❌ 终止失败: {e}]\n"
@ -116,9 +206,7 @@ def stop_eval():
else:
return "[⚠️ 无活动 evalscope 进程]\n"
# ---------------- Run/Stop 控制器 ----------------
# ---------------- 控制器 ----------------
def toggle_run(
inputs, native, other, output_choices,
api_url, api_token,
@ -126,7 +214,8 @@ def toggle_run(
max_tokens, min_tokens, parallel_reqs,
max_prompt_len, num_requests,
model_override,
is_running
is_running,
run_mode
):
global should_stop
@ -137,20 +226,17 @@ def toggle_run(
if not is_running:
should_stop = False
yield from run_eval(
inputs, native, other, output_choices,
api_url, api_token,
api_provider, dataset,
max_tokens, min_tokens, parallel_reqs,
max_prompt_len, num_requests,
model_override
)
if run_mode == "perf":
yield from run_perf(...)
elif run_mode == "eval":
yield from run_eval_tool(...)
elif run_mode == "app":
yield "[⚠️ 当前为 app 模式,请手动打开 http://localhost:7901 查看报告]", False, gr.update(value="Run Evaluation")
else:
msg = stop_eval()
yield msg, False, gr.update(value="Run Evaluation")
# ---------------- 互斥逻辑 ----------------
# ---------------- 输入源互斥逻辑 ----------------
def enforce_input_exclusive_and_toggle_fields(selected):
order = ["API Models", "Local Models", "Benchmarks", "Custom Datasets"]
group1 = {"API Models", "Local Models"}
@ -167,20 +253,23 @@ def enforce_input_exclusive_and_toggle_fields(selected):
final_sel |= set(keep_only_one(group2))
final_list = [itm for itm in order if itm in final_sel]
input_update = gr.update() if list(selected) == final_list else gr.update(value=final_list)
show_api_fields = "API Models" in final_sel
api_field_update = gr.update(visible=show_api_fields) # ✅ 正确
api_field_update = gr.update(visible="API Models" in final_sel)
return input_update, api_field_update
# ---------------- 构建 Gradio UI ----------------
# ---------------- UI 构建 ----------------
with gr.Blocks(title="EvalScope 全功能界面") as demo:
is_running = gr.State(value=False)
# ===== 输入源 =====
with gr.Group():
with gr.Row():
mode_dropdown = gr.Dropdown(
label="评测类型",
choices=["eval", "perf", "app"],
value="perf",
info="eval: 智力评测perf: 性能评测app: 可视化"
)
with gr.Group():
with gr.Row():
input_choices = gr.CheckboxGroup(
@ -189,89 +278,45 @@ with gr.Blocks(title="EvalScope 全功能界面") as demo:
interactive=True
)
# ===== API 地址 & 运行参数(统一控制显示) =====
with gr.Column(visible=False) as api_fields:
api_url_input = gr.Textbox(
label="API 地址",
placeholder="https://ai.aiszaiai.com/v1/chat/completions"
)
api_token_input = gr.Textbox(
label="Token 密钥",
type="password",
placeholder="sk-xxx"
)
api_url_input = gr.Textbox(label="API 地址", placeholder="https://.../v1/chat/completions")
api_token_input = gr.Textbox(label="Token 密钥", type="password", placeholder="sk-xxx")
with gr.Accordion("运行参数(可选修改)", open=False):
with gr.Row():
api_provider_dropdown = gr.Dropdown(
label="API Provider (--api)",
choices=["openai", "azure", "ollama", "gemini"],
value="openai"
)
dataset_dropdown = gr.Dropdown(
label="评测数据集 (--dataset)",
choices=["openqa", "flickr8k", "longalpaca", "random_dataset", "line_by_line", "custom", "speed_benchmark"],
value="openqa"
)
model_override_input = gr.Textbox(
label="自定义模型名 (--model),留空则使用时间戳",
placeholder="e.g. my-llm-7b"
)
api_provider_dropdown = gr.Dropdown(label="API Provider", choices=["openai", "azure", "ollama", "gemini"], value="openai")
dataset_dropdown = gr.Dropdown(label="评测数据集 (--dataset)", choices=PERF_DATASETS, value=PERF_DATASETS[0])
model_override_input = gr.Textbox(label="自定义模型名 (--model)", placeholder="my-llm")
with gr.Row():
max_tokens_slider = gr.Slider(
label="Max Tokens (--max-tokens)",
minimum=256, maximum=8192, step=256, value=1024
)
min_tokens_slider = gr.Slider(
label="Min Tokens (--min-tokens)",
minimum=0, maximum=4096, step=64, value=1024
)
max_tokens_slider = gr.Slider(label="Max Tokens", minimum=256, maximum=8192, step=256, value=1024)
min_tokens_slider = gr.Slider(label="Min Tokens", minimum=0, maximum=4096, step=64, value=1024)
with gr.Row():
parallel_slider = gr.Slider(
label="并发请求数 (--parallel)",
minimum=1, maximum=16, step=1, value=1
)
num_req_slider = gr.Slider(
label="请求条数 (--number)",
minimum=1, maximum=1000, step=1, value=100
)
max_prompt_len_slider = gr.Slider(
label="最大 Prompt 长度 (--max-prompt-length)",
minimum=2048, maximum=32768, step=512, value=15360
)
parallel_slider = gr.Slider(label="并发请求数", minimum=1, maximum=16, step=1, value=1)
num_req_slider = gr.Slider(label="请求条数", minimum=1, maximum=1000, step=1, value=100)
max_prompt_len_slider = gr.Slider(label="最大 Prompt 长度", minimum=2048, maximum=32768, step=512, value=15360)
# ===== 本地/外部组件 =====
with gr.Row():
with gr.Column():
native_choices = gr.CheckboxGroup(
label="启用本地模块",
choices=["Model Adapter", "Data Adapter", "Evaluator", "Perf Monitor"]
)
native_choices = gr.CheckboxGroup(label="启用本地模块", choices=["Model Adapter", "Data Adapter", "Evaluator", "Perf Monitor"])
with gr.Column():
other_choices = gr.CheckboxGroup(
label="启用外部后端",
choices=["OpenCompass", "VLMEvalKit", "RAGAS", "MTEB/CMTEB"]
)
other_choices = gr.CheckboxGroup(label="启用外部后端", choices=["OpenCompass", "VLMEvalKit", "RAGAS", "MTEB/CMTEB"])
# ===== 输出形式 =====
output_choices = gr.CheckboxGroup(
label="输出形式",
choices=["Evaluation Report", "Gradio", "WandB", "Swanlab"]
)
# ===== 控制按钮 & 日志 =====
output_choices = gr.CheckboxGroup(label="输出形式", choices=["Evaluation Report", "Gradio", "WandB", "Swanlab"])
run_button = gr.Button("Run Evaluation")
output_text = gr.TextArea(
label="执行结果",
lines=20,
interactive=False,
show_copy_button=True
)
output_text = gr.TextArea(label="执行结果", lines=20, interactive=False, show_copy_button=True)
# ===== 绑定事件 =====
input_choices.change(
fn=enforce_input_exclusive_and_toggle_fields,
inputs=input_choices,
outputs=[input_choices, api_fields] # ✅ 只输出这两个
outputs=[input_choices, api_fields]
)
mode_dropdown.change(
lambda mode: gr.update(
choices=EVAL_DATASETS if mode == "eval" else PERF_DATASETS,
value=EVAL_DATASETS[0] if mode == "eval" else PERF_DATASETS[0]
),
inputs=mode_dropdown,
outputs=dataset_dropdown
)
run_button.click(
@ -284,7 +329,8 @@ with gr.Blocks(title="EvalScope 全功能界面") as demo:
max_tokens_slider, min_tokens_slider, parallel_slider,
max_prompt_len_slider, num_req_slider,
model_override_input,
is_running
is_running,
mode_dropdown
],
outputs=[output_text, is_running, run_button],
show_progress=True

402
gradio_ui_old.py Normal file
View File

@ -0,0 +1,402 @@
import time
import os
import glob
import threading
import subprocess
import gradio as gr
import psutil
import signal
# ---------------- 全局进程句柄 ----------------
current_process = None
should_stop = False
# ---------------- 核心运行函数 ----------------
def run_perf(
inputs, native, other, output_choices,
api_url, api_token,
api_provider, dataset,
max_tokens, min_tokens, parallel_reqs,
max_prompt_len, num_requests,
model_override
):
global current_process
timestamp = time.strftime("%Y%m%d-%H%M%S")
model_name = model_override.strip() or timestamp
command = [
"evalscope", "perf",
"--url", api_url.strip(),
"--api", api_provider,
"--model", model_name,
"--dataset", dataset,
"--max-tokens", str(int(max_tokens)),
"--min-tokens", str(int(min_tokens)),
"--parallel", str(int(parallel_reqs)),
"--max-prompt-length", str(int(max_prompt_len)),
"--number", str(int(num_requests)),
"--api-key", api_token.strip(),
]
full_output = f"[Eval Started @ {timestamp}]\nCmd: {' '.join(command)}\n"
yield full_output, True, gr.update(value="Stop Evaluation")
try:
current_process = subprocess.Popen(
command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
text=True, bufsize=1, start_new_session=True
)
for line in current_process.stdout:
if should_stop:
break
full_output += line
yield full_output, True, gr.update(value="Stop Evaluation")
current_process.stdout.close()
current_process.wait()
except Exception as e:
full_output += f"[Error] {e}\n"
yield full_output, False, gr.update(value="Run Evaluation")
finally:
current_process = None
full_output += "[Eval Finished]\n"
if "Evaluation Report" in output_choices:
vis_port = 7901
outputs_root = "./outputs"
try:
latest_output = max(
glob.glob(os.path.join(outputs_root, "*")),
key=os.path.getmtime
)
except ValueError:
latest_output = outputs_root
vis_cmd = [
"evalscope", "app",
"--outputs", outputs_root,
"--server-name", "0.0.0.0",
"--server-port", str(vis_port),
]
threading.Thread(
target=subprocess.Popen,
args=(vis_cmd,),
kwargs={"stdout": subprocess.DEVNULL,
"stderr": subprocess.STDOUT},
daemon=True
).start()
full_output += f"[Visualization 👉] http://localhost:{vis_port}\n"
yield full_output, False, gr.update(value="Run Evaluation")
# ---------------- 停止函数 ----------------
def stop_eval():
global current_process, should_stop
should_stop = True
if current_process and current_process.poll() is None:
try:
pgid = os.getpgid(current_process.pid)
os.killpg(pgid, signal.SIGINT) # ✅ 优雅终止
time.sleep(2)
if current_process.poll() is None:
os.killpg(pgid, signal.SIGKILL) # ❗ 强制终止
return "[✅ 已发送终止信号 (SIGINT → SIGKILL fallback)]\n"
except Exception as e:
return f"[❌ 终止失败: {e}]\n"
finally:
current_process = None
else:
return "[⚠️ 无活动 evalscope 进程]\n"
# ---------------- Run/Stop 控制器 ----------------
def toggle_run(
inputs, native, other, output_choices,
api_url, api_token,
api_provider, dataset,
max_tokens, min_tokens, parallel_reqs,
max_prompt_len, num_requests,
model_override,
is_running,
run_mode # 👈 增加这个参数
):
global should_stop
if not inputs:
msg = "[❌ 错误] 必须至少选择一个输入源API、本地、基准或自定义才能开始运行。\n"
yield msg, False, gr.update(value="Run Evaluation")
return
if not is_running:
should_stop = False
if run_mode == "perf":
yield from run_perf(
inputs, native, other, output_choices,
api_url, api_token,
api_provider, dataset,
max_tokens, min_tokens, parallel_reqs,
max_prompt_len, num_requests,
model_override
)
elif run_mode == "eval":
yield from run_eval_tool(
inputs, native, other, output_choices,
api_url, api_token,
api_provider, dataset,
max_tokens, min_tokens, parallel_reqs,
max_prompt_len, num_requests,
model_override
)
else:
msg = stop_eval()
yield msg, False, gr.update(value="Run Evaluation")
# ---------------- 互斥逻辑 ----------------
def enforce_input_exclusive_and_toggle_fields(selected):
order = ["API Models", "Local Models", "Benchmarks", "Custom Datasets"]
group1 = {"API Models", "Local Models"}
group2 = {"Benchmarks", "Custom Datasets"}
def keep_only_one(group):
filtered = [item for item in selected if item in group]
return filtered[-1:]
final_sel = set(selected)
final_sel -= group1
final_sel |= set(keep_only_one(group1))
final_sel -= group2
final_sel |= set(keep_only_one(group2))
final_list = [itm for itm in order if itm in final_sel]
input_update = gr.update() if list(selected) == final_list else gr.update(value=final_list)
show_api_fields = "API Models" in final_sel
api_field_update = gr.update(visible=show_api_fields) # ✅ 正确
return input_update, api_field_update
def run_eval_tool(
inputs, native, other, output_choices,
api_url, api_token,
api_provider, dataset,
max_tokens, min_tokens, parallel_reqs,
max_prompt_len, num_requests,
model_override
):
global current_process
timestamp = time.strftime("%Y%m%d-%H%M%S")
model_name = model_override.strip() or timestamp
command = [
"evalscope", "eval",
"--model", model_name,
"--datasets", dataset
]
if api_url.strip():
command += [
"--eval-type", "service",
"--api-url", api_url.strip(),
"--api-key", api_token.strip()
]
if num_requests:
command += ["--limit", str(int(num_requests))]
full_output = f"[Eval Started @ {timestamp}]\nCmd: {' '.join(command)}\n"
yield full_output, True, gr.update(value="Stop Evaluation")
try:
current_process = subprocess.Popen(
command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
text=True, bufsize=1, start_new_session=True
)
for line in current_process.stdout:
if should_stop:
break
full_output += line
yield full_output, True, gr.update(value="Stop Evaluation")
current_process.stdout.close()
current_process.wait()
except Exception as e:
full_output += f"[Error] {e}\n"
yield full_output, False, gr.update(value="Run Evaluation")
finally:
current_process = None
full_output += "[Eval Finished]\n"
if "Evaluation Report" in output_choices:
vis_port = 7901
outputs_root = "./outputs"
try:
latest_output = max(
glob.glob(os.path.join(outputs_root, "*")),
key=os.path.getmtime
)
except ValueError:
latest_output = outputs_root
vis_cmd = [
"evalscope", "app",
"--outputs", outputs_root,
"--server-name", "0.0.0.0",
"--server-port", str(vis_port),
]
threading.Thread(
target=subprocess.Popen,
args=(vis_cmd,),
kwargs={"stdout": subprocess.DEVNULL,
"stderr": subprocess.STDOUT},
daemon=True
).start()
full_output += f"[Visualization 👉] http://localhost:{vis_port}\n"
yield full_output, False, gr.update(value="Run Evaluation")
# ---------------- 构建 Gradio UI ----------------
with gr.Blocks(title="EvalScope 全功能界面") as demo:
is_running = gr.State(value=False)
with gr.Group():
with gr.Row():
mode_dropdown = gr.Dropdown(
label="评测类型",
info="eval: 智力评测perf: 推理性能app: Web 可视化",
choices=["eval", "perf", "app"],
value="perf"
)
# ===== 输入源 =====
with gr.Group():
with gr.Row():
input_choices = gr.CheckboxGroup(
label="选择输入源",
choices=["API Models", "Local Models", "Benchmarks", "Custom Datasets"],
interactive=True
)
# ===== API 地址 & 运行参数(统一控制显示) =====
with gr.Column(visible=False) as api_fields:
api_url_input = gr.Textbox(
label="API 地址",
placeholder="https://ai.aiszaiai.com/v1/chat/completions"
)
api_token_input = gr.Textbox(
label="Token 密钥",
type="password",
placeholder="sk-xxx"
)
with gr.Accordion("运行参数(可选修改)", open=False):
with gr.Row():
api_provider_dropdown = gr.Dropdown(
label="API Provider (--api)",
choices=["openai", "azure", "ollama", "gemini"],
value="openai"
)
dataset_dropdown = gr.Dropdown(
label="评测数据集 (--dataset)",
choices=["openqa", "flickr8k", "longalpaca", "random_dataset", "line_by_line", "custom", "speed_benchmark"],
value="openqa"
)
model_override_input = gr.Textbox(
label="自定义模型名 (--model),留空则使用时间戳",
placeholder="e.g. my-llm-7b"
)
with gr.Row():
max_tokens_slider = gr.Slider(
label="Max Tokens (--max-tokens)",
minimum=256, maximum=8192, step=256, value=1024
)
min_tokens_slider = gr.Slider(
label="Min Tokens (--min-tokens)",
minimum=0, maximum=4096, step=64, value=1024
)
with gr.Row():
parallel_slider = gr.Slider(
label="并发请求数 (--parallel)",
minimum=1, maximum=16, step=1, value=1
)
num_req_slider = gr.Slider(
label="请求条数 (--number)",
minimum=1, maximum=1000, step=1, value=100
)
max_prompt_len_slider = gr.Slider(
label="最大 Prompt 长度 (--max-prompt-length)",
minimum=2048, maximum=32768, step=512, value=15360
)
# ===== 本地/外部组件 =====
with gr.Row():
with gr.Column():
native_choices = gr.CheckboxGroup(
label="启用本地模块",
choices=["Model Adapter", "Data Adapter", "Evaluator", "Perf Monitor"]
)
with gr.Column():
other_choices = gr.CheckboxGroup(
label="启用外部后端",
choices=["OpenCompass", "VLMEvalKit", "RAGAS", "MTEB/CMTEB"]
)
# ===== 输出形式 =====
output_choices = gr.CheckboxGroup(
label="输出形式",
choices=["Evaluation Report", "Gradio", "WandB", "Swanlab"]
)
# ===== 控制按钮 & 日志 =====
run_button = gr.Button("Run Evaluation")
output_text = gr.TextArea(
label="执行结果",
lines=20,
interactive=False,
show_copy_button=True
)
# ===== 绑定事件 =====
input_choices.change(
fn=enforce_input_exclusive_and_toggle_fields,
inputs=input_choices,
outputs=[input_choices, api_fields] # ✅ 只输出这两个
)
run_button.click(
fn=toggle_run,
inputs=[
input_choices, native_choices, other_choices,
output_choices,
api_url_input, api_token_input,
api_provider_dropdown, dataset_dropdown,
max_tokens_slider, min_tokens_slider, parallel_slider,
max_prompt_len_slider, num_req_slider,
model_override_input,
is_running,
mode_dropdown # ✅ 改为新的变量
],
outputs=[output_text, is_running, run_button],
show_progress=True
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7900)