# 文生图评测 EvalScope框架支持多种文生图模型的评测,包括Stable Diffusion、Flux等。用户可以通过EvalScope框架对这些模型进行评测,获取模型在不同任务上的性能指标。 ## 支持的评测数据集 请参考[文档](../../get_started/supported_dataset/aigc.md#aigc评测集)。 ## 支持的评测指标 EvalScope框架支持多种评测指标,用户可以根据需求选择合适的指标进行评测。以下是支持的评测指标列表: | 评估指标 | 项目地址 | 打分范围(越高越好) | 备注 | |-----------------|----------------|---------------|---------------| | `VQAScore` | [Github](https://github.com/linzhiqiu/t2v_metrics) | [0, 1](通常) | 用问答方式评估图文一致性 | | `CLIPScore` | [Github](https://github.com/linzhiqiu/t2v_metrics) | [0, 0.3](通常) | 使用CLIP评估图像与文本的匹配程度 | | `BLIPv2Score` | [Github](https://github.com/linzhiqiu/t2v_metrics) | [0, 1](通常) | 使用BLIP的ITM评估图像与文本的匹配程度 | | `PickScore` | [Github](https://github.com/yuvalkirstain/PickScore) | [0, 0.3](通常) | 基于 CLIP 模型的评分系统,预测用户对生成图像的偏好 | | `HPSv2Score`/`HPSv2.1Score` | [Github](https://github.com/tgxs002/HPSv2) | [0, 0.3](通常) | 基于人类偏好的评估指标,在人类偏好数据集(HPD v2)上进行训练 | | `ImageReward` | [Github](https://github.com/THUDM/ImageReward) | [-3, 1](通常) | 一种奖励模型,通过人类反馈训练,反映人类对图片的偏好 | | `MPS` | [Github](https://github.com/Kwai-Kolors/MPS) | [0, 15](通常) | 快手:一种多维度的偏好评分方法,综合考虑生成图像的多个属性(如逼真度、语义对齐等)来评估其质量 | | `FGA_BLIP2Score` | [Github](https://github.com/DYEvaLab/EvalMuse) | 总体 [0, 5](通常,各维度为[0, 1]) | 字节跳动:用于评估细粒度的生成图像的质量和语义对齐 | ## 安装依赖 用户可以通过以下命令安装相关依赖: ```bash pip install evalscope[aigc] -U ``` ## Benchmark 用户可以通过以下命令配置文生图模型的评测任务。 下面展示使用modelscope的Stable Diffusion XL模型在`tifa160`上使用默认指标进行评测的示例代码: ```python from evalscope import TaskConfig, run_task from evalscope.constants import ModelTask task_cfg = TaskConfig( model='stabilityai/stable-diffusion-xl-base-1.0', # model id on modelscope model_task=ModelTask.IMAGE_GENERATION, # must be IMAGE_GENERATION model_args={ 'pipeline_cls': 'DiffusionPipeline', 'use_safetensors': True, 'variant': 'fp16', 'torch_dtype': 'torch.float16', }, datasets=[ 'tifa160', 'genai_bench', 'evalmuse', 'hpdv2', ], limit=5, generation_config={ 'height': 1024, 'width': 1024, 'num_inference_steps': 50, 'guidance_scale': 9.0, } ) # 运行评测任务 run_task(task_cfg=task_cfg) ``` ### 参数说明 基本参数请参考:[参数说明](../../get_started/parameters.md)。 需要注意的参数如下: - `model`: 模型ID,支持本地模型和modelscope model id。 - `model_task`: 模型任务类型,必须为`image_generation`。 - `model_args`: 模型加载参数,支持传入模型加载参数,包括: - `pipeline_cls`: `diffusers`中的用于加载模型`Pipeline`类,默认为`DiffusionPipeline`。下面的其余参数均为该`Pipeline`的参数,请参考[diffusers文档](https://huggingface.co/docs/diffusers/using-diffusers/loading)。 - `use_safetensors`: 是否使用安全张量。 - `variant`: 模型变体。 - `generation_config`: 生成参数,支持传入模型生成参数,具体支持的参数参考对应的`Pipeline`类,一般包括: - `height`: 生成图像的高度。 - `width`: 生成图像的宽度。 - `num_inference_steps`: 生成图像的推理步数。 - `guidance_scale`: 生成图像的引导比例。 ### 输出结果 评测完成后,EvalScope将输出评测结果,包括模型ID、数据集、指标、子集、数量和得分等信息。以下是输出结果的示例: ```text +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | Model | Dataset | Metric | Subset | Num | Score | Cat.0 | +==============================+=============+==============================+==================+=======+=========+=========+ | stable-diffusion-xl-base-1.0 | evalmuse | FGA_BLIP2Score:overall_score | EvalMuse | 5 | 3.3148 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | evalmuse | FGA_BLIP2Score:activity | EvalMuse | 2 | 0.4592 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | evalmuse | FGA_BLIP2Score:attribute | EvalMuse | 11 | 0.8411 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | evalmuse | FGA_BLIP2Score:location | EvalMuse | 2 | 0.8763 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | evalmuse | FGA_BLIP2Score:object | EvalMuse | 14 | 0.705 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | evalmuse | FGA_BLIP2Score:material | EvalMuse | 4 | 0.7717 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | evalmuse | FGA_BLIP2Score:food | EvalMuse | 1 | 0.611 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | evalmuse | FGA_BLIP2Score:color | EvalMuse | 1 | 0.784 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | evalmuse | FGA_BLIP2Score:human | EvalMuse | 2 | 0.2692 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | evalmuse | FGA_BLIP2Score:spatial | EvalMuse | 1 | 0.1345 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | genai_bench | VQAScore | GenAI-Bench-1600 | 5 | 0.9169 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | genai_bench | VQAScore_basic | GenAI-Bench-1600 | 5 | 0.9169 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | hpdv2 | HPSv2.1Score | HPDv2 | 5 | 0.3268 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | hpdv2 | HPSv2.1Score_Animation | HPDv2 | 5 | 0.3268 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ | stable-diffusion-xl-base-1.0 | tifa160 | PickScore | TIFA-160 | 5 | 0.2261 | default | +------------------------------+-------------+------------------------------+------------------+-------+---------+---------+ ``` ## 自定义评测 当前文生图模型的开发流程日益复杂,部分开发者需依赖ComfyUI等可视化工作流工具进行多模块组合生成,或通过API接口调用云端模型服务(如Stable Diffusion WebUI、商业API平台)。针对这类场景,EvalScope支持“无模型介入”的评测模式 ,仅需用户提供生成图片的prompt文本列表 与对应图像存储路径 ,即可直接启动评测流程,无需本地下载模型权重或执行推理计算。 用户可以通过以下命令配置自定义prompts来进行评测任务。 ### 自定义数据集评测 提供如下格式的jsonl文件: ```json {"id": 1, "prompt": "A beautiful sunset over the mountains", "image_path": "/path/to/generated/image1.jpg"} {"id": 2, "prompt": "A futuristic city skyline", "image_path": "/path/to/generated/image2.jpg"} ``` - `id`: 评测数据的唯一标识符。 - `prompt`: 生成图像的提示文本。 - `image_path`: 生成图像的路径。 #### 配置评测任务 下面展示了使用自定义评测数据集的示例代码,展示了所有指标的使用: ```{note} - 使用自定义评测任务不需要传递`model`参数,`model_id`用来指定模型名称。只需配置对应模型生成的`image_path`即可。 - 指标计算模型会在任务初始化时全部加载,可能会导致内存显存较大,请求根据实际情况调整需要计算的指标或分多个任务进行计算。 ``` 运行如下代码: ```python from evalscope import TaskConfig, run_task task_cfg = TaskConfig( model_id='T2I-Model', datasets=[ 'general_t2i' ], dataset_args={ 'general_t2i': { 'metric_list': [ 'PickScore', 'CLIPScore', 'HPSv2Score', 'BLIPv2Score', 'ImageRewardScore', 'VQAScore', 'FGA_BLIP2Score', 'MPS', ], 'dataset_id': 'custom_eval/multimodal/t2i/example.jsonl', } } ) run_task(task_cfg=task_cfg) ``` #### 输出结果 输出结果如下: ```text +-------------+-------------+------------------+----------+-------+---------+---------+ | Model | Dataset | Metric | Subset | Num | Score | Cat.0 | +=============+=============+==================+==========+=======+=========+=========+ | dummy-model | general_t2i | PickScore | example | 10 | 0.2071 | default | +-------------+-------------+------------------+----------+-------+---------+---------+ | dummy-model | general_t2i | CLIPScore | example | 10 | 0.1996 | default | +-------------+-------------+------------------+----------+-------+---------+---------+ | dummy-model | general_t2i | HPSv2Score | example | 10 | 0.2626 | default | +-------------+-------------+------------------+----------+-------+---------+---------+ | dummy-model | general_t2i | HPSv2.1Score | example | 10 | 0.238 | default | +-------------+-------------+------------------+----------+-------+---------+---------+ | dummy-model | general_t2i | BLIPv2Score | example | 10 | 0.2374 | default | +-------------+-------------+------------------+----------+-------+---------+---------+ | dummy-model | general_t2i | ImageRewardScore | example | 10 | -0.238 | default | +-------------+-------------+------------------+----------+-------+---------+---------+ | dummy-model | general_t2i | VQAScore | example | 10 | 0.6072 | default | +-------------+-------------+------------------+----------+-------+---------+---------+ | dummy-model | general_t2i | FGA_BLIP2Score | example | 10 | 2.6918 | default | +-------------+-------------+------------------+----------+-------+---------+---------+ | dummy-model | general_t2i | MPS | example | 10 | 4.8749 | default | +-------------+-------------+------------------+----------+-------+---------+---------+ ``` ### 自定义benchmark评测 如果想用自定义的模型来进行benchmark评测,可从modelscope[下载](https://modelscope.cn/datasets/AI-ModelScope/T2V-Eval-Prompts/files)对应benchmark的jsonl文件,例如`eval_muse_format.jsonl`,将模型生成的图像路径替换为对应的`image_path`,如下所示: ```json {"id":"EvalMuse_1","prompt":"cartoon die cut sticker of hotdog with white border on gray background","tags":["cartoon (attribute)","die cut sticker (object)","hotdog (food)","white (object)","border (object)","gray (color)","background (attribute)"], "image_path":"/path/to/generated/image1.jpg"} {"id":"EvalMuse_2","prompt":"Fiat 124","tags":["Fiat 124 (object)"], "image_path":"/path/to/generated/image2.jpg"} ``` #### 配置评测任务 配置对应的评测任务,运行如下代码即可: ```python from evalscope import TaskConfig, run_task task_cfg = TaskConfig( model_id='T2I-Model', datasets=[ 'evalmuse', ], dataset_args={ 'evalmuse': { 'dataset_id': 'custom_eval/multimodal/t2i/example.jsonl', } } ) run_task(task_cfg=task_cfg) ``` ## 可视化 EvalScope框架支持对评测结果进行可视化,用户可以通过以下命令生成可视化报告: ```bash evalscope app ``` 使用文档请参考[可视化文档](../../get_started/visualization.md)。 示例如下: ![image](./images/example.jpg)