# Copyright (c) Alibaba, Inc. and its affiliates. from mmengine.config import read_base from opencompass.partitioners import NaivePartitioner from opencompass.runners import LocalRunner from opencompass.tasks import OpenICLInferTask with read_base(): # from opencompass.configs.summarizers.medium import summarizer # from opencompass.configs.summarizers.PMMEval import summarizer from evalscope.backend.opencompass.tasks.eval_datasets import datasets # 1. Get datasets # Note: OpenAI API format evaluation needs a special humaneval postprocessor for _dataset in datasets: if _dataset['path'] == 'openai_humaneval': from opencompass.datasets.humaneval import humaneval_gpt_postprocess _dataset['eval_cfg']['pred_postprocessor']['type'] = humaneval_gpt_postprocess # 2. Get models, only for placeholder, you should fill in the real model information from command line # See more templates in `opencompass.cli.arguments.ApiModelConfig` models = [] # 3. Get infer config infer = dict( partitioner=dict(type=NaivePartitioner), runner=dict(type=LocalRunner, max_num_workers=4, task=dict(type=OpenICLInferTask)), )