import math import numpy as np import pandas as pd import re from collections import defaultdict from sklearn.linear_model import LogisticRegression from tqdm import tqdm from evalscope.utils.logger import get_logger logger = get_logger() def post_process_arenahard(completion): result = re.findall(r'\[\[([AB<>=]+)\]\]', completion) if result: return result[0] else: return None def get_battles_from_row(row, first_game_only=False, multiplier=3): results = [] output = {'model_a': row['model_a'], 'model_b': row['model_b']} game = row['games'][0] weight = 1 if game['score'] == 'A=B': output['winner'] = 'tie' elif game['score'] == 'A>B': output['winner'] = 'model_a' elif game['score'] == 'A>>B': output['winner'] = 'model_a' weight = multiplier elif game['score'] == 'B>A': output['winner'] = 'model_b' elif game['score'] == 'B>>A': output['winner'] = 'model_b' weight = multiplier else: weight = 0 if weight: results += [output] * weight if first_game_only: return pd.DataFrame(results) # game 2 output = {'model_a': row['model_a'], 'model_b': row['model_b']} game = row['games'][1] weight = 1 if game['score'] == 'A=B': output['winner'] = 'tie' elif game['score'] == 'A>B': output['winner'] = 'model_b' elif game['score'] == 'A>>B': output['winner'] = 'model_b' weight = multiplier elif game['score'] == 'B>A': output['winner'] = 'model_a' elif game['score'] == 'B>>A': output['winner'] = 'model_a' weight = multiplier else: weight = 0 if weight: results += [output] * weight return pd.DataFrame(results) def compute_mle_elo(df, SCALE=400, BASE=10, INIT_RATING=1000): models = pd.concat([df['model_a'], df['model_b']]).unique() models = pd.Series(np.arange(len(models)), index=models) # duplicate battles df = pd.concat([df, df], ignore_index=True) p = len(models.index) n = df.shape[0] X = np.zeros([n, p]) X[np.arange(n), models[df['model_a']]] = +math.log(BASE) X[np.arange(n), models[df['model_b']]] = -math.log(BASE) # one A win => two A win Y = np.zeros(n) Y[df['winner'] == 'model_a'] = 1.0 # one tie => one A win + one B win # find tie + tie (both bad) index tie_idx = (df['winner'] == 'tie') | (df['winner'] == 'tie (bothbad)') tie_idx[len(tie_idx) // 2:] = False Y[tie_idx] = 1.0 if len(np.unique(Y)) < 2: logger.info('Warning: Only one class in the data') elo_scores = pd.Series(INIT_RATING, index=models.index) if np.all(Y == 1.0): elo_scores[df['model_a'].iloc[0]] += SCALE # Boost the winning model elif np.all(Y == 0.0): elo_scores[df['model_b'].iloc[0]] += SCALE # Boost the winning model return elo_scores.sort_values(ascending=False) lr = LogisticRegression( fit_intercept=False, penalty=None, tol=1e-8) # May need to set a small value when not use GPT4 as judge model lr.fit(X, Y) elo_scores = SCALE * lr.coef_[0] + INIT_RATING # set anchor as gpt4-0314 = 1000 if 'gpt4-0314' in models.index: elo_scores += 1000 - elo_scores[models['gpt4-0314']] return pd.Series(elo_scores, index=models.index).sort_values(ascending=False) def get_bootstrap_result(battles, func_compute_elo, num_round): rows = [] for _ in tqdm(range(num_round), desc='bootstrap'): res = func_compute_elo(battles.sample(frac=1.0, replace=True)) if res is not None: rows.append(res) df = pd.DataFrame(rows) return df[df.median().sort_values(ascending=False).index] def predict_win_rate(elo_ratings, SCALE=400, BASE=10, INIT_RATING=1000): names = sorted(list(elo_ratings.keys())) wins = defaultdict(lambda: defaultdict(lambda: 0)) for a in names: for b in names: ea = 1 / (1 + BASE**((elo_ratings[b] - elo_ratings[a]) / SCALE)) wins[a][b] = ea wins[b][a] = 1 - ea data = {a: [wins[a][b] if a != b else np.NAN for b in names] for a in names} df = pd.DataFrame(data, index=names) df.index.name = 'model_a' df.columns.name = 'model_b' return df.T def get_win_rate_column(df, column, baseline='gpt4-0314'): to_dict = df[['model', column]].set_index('model').to_dict()[column] win_rate_table = predict_win_rate(to_dict) return win_rate_table[baseline].fillna(0.5).apply(lambda x: round(x, 4))