from collections import defaultdict from typing import Any, Dict from evalscope.benchmarks import Benchmark, DataAdapter from evalscope.constants import EvalType, OutputType from evalscope.metrics import exact_match from evalscope.metrics.completion_parsers import ResponseParser SUBSET_LIST = [ 'computer science', 'math', 'chemistry', 'engineering', 'law', 'biology', 'health', 'physics', 'business', 'philosophy', 'economics', 'other', 'psychology', 'history' ] @Benchmark.register( name='mmlu_pro', pretty_name='MMLU-Pro', tags=['MCQ', 'Knowledge'], description= 'MMLU-Pro is a benchmark for evaluating language models on multiple-choice questions across various subjects. It includes questions from different domains, where the model must select the correct answer from given options.', # noqa: E501 dataset_id='modelscope/MMLU-Pro', model_adapter=OutputType.GENERATION, output_types=[OutputType.MULTIPLE_CHOICE, OutputType.GENERATION], subset_list=SUBSET_LIST, metric_list=['AverageAccuracy'], few_shot_num=5, train_split='validation', eval_split='test', prompt_template= 'The following are multiple choice questions (with answers) about {subset_name}. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n{query}', # noqa: E501 ) class MMLUProAdapter(DataAdapter): def __init__(self, **kwargs): super().__init__(**kwargs) self.choices = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'] def load(self, **kwargs): # default load all data kwargs['subset_list'] = ['default'] data_dict = super().load(**kwargs) return self.reformat_subset(data_dict, subset_key='category') def gen_prompt(self, input_d: Dict, subset_name: str, few_shot_list: list, **kwargs) -> Any: if self.few_shot_num > 0: prefix = self.format_fewshot_examples(few_shot_list) else: prefix = '' query = prefix + 'Q: ' + input_d['question'] + '\n' + \ self.__form_options(input_d['options']) + '\n' full_prompt = self.prompt_template.format(subset_name=subset_name, query=query) return self.gen_prompt_data(full_prompt) def format_fewshot_examples(self, few_shot_list): # load few-shot prompts for each category prompts = '' for index, d in enumerate(few_shot_list): prompts += 'Q: ' + d['question'] + '\n' + \ self.__form_options(d['options']) + '\n' + \ d['cot_content'] + '\n\n' return prompts def __form_options(self, options: list): option_str = 'Options are:\n' for opt, choice in zip(options, self.choices): option_str += f'({choice}): {opt}' + '\n' return option_str def get_gold_answer(self, input_d: dict) -> str: """ Parse the raw input labels (gold). Args: input_d: input raw data. Depending on the dataset. Returns: The parsed input. e.g. gold answer ... Depending on the dataset. """ return input_d['answer'] def parse_pred_result(self, result: str, raw_input_d: dict = None, eval_type: str = EvalType.CHECKPOINT) -> str: """ Parse the predicted result and extract proper answer. Args: result: Predicted answer from the model. Usually a string for chat. raw_input_d: The raw input. Depending on the dataset. eval_type: 'checkpoint' or 'service' or `custom`, default: 'checkpoint' Returns: The parsed answer. Depending on the dataset. Usually a string for chat. """ if self.model_adapter == OutputType.MULTIPLE_CHOICE: return result else: return ResponseParser.parse_first_option(result, options=self.choices) def match(self, gold: str, pred: str) -> float: """ Match the gold answer and the predicted answer. Args: gold (Any): The golden answer. Usually a string for chat/multiple-choice-questions. e.g. 'A', extracted from get_gold_answer method. pred (Any): The predicted answer. Usually a string for chat/multiple-choice-questions. e.g. 'B', extracted from parse_pred_result method. Returns: The match result. Usually a score (float) for chat/multiple-choice-questions. """ return exact_match(gold=gold, pred=pred)