from itertools import product from tqdm import tqdm from typing import TYPE_CHECKING, List, Union from evalscope.benchmarks import Benchmark, DataAdapter from evalscope.constants import AnswerKeys, EvalType from evalscope.metrics import LLMJudge, exact_match from evalscope.metrics.metrics import mean from evalscope.utils import get_logger if TYPE_CHECKING: from evalscope.report import Report logger = get_logger() PROMPT_TEMPLATE = """Please read the following text and answer the question below. {context} {question} Don't give information outside the document or repeat your findings.""" @Benchmark.register( name='needle_haystack', pretty_name='Needle-in-a-Haystack', tags=['Retrieval', 'Long Context'], description='Needle in a Haystack is a benchmark focused on information retrieval tasks. ' 'It requires the model to find specific information within a large corpus of text. ' '[Usage Example](https://evalscope.readthedocs.io/zh-cn/latest/third_party/needle_haystack.html)', # noqa: E501 dataset_id='AI-ModelScope/Needle-in-a-Haystack-Corpus', metric_list=['AverageAccuracy'], subset_list=['english', 'chinese'], few_shot_num=0, train_split=None, eval_split='test', system_prompt='You are a helpful AI bot that answers questions for a user. Keep your response short and direct', prompt_template=PROMPT_TEMPLATE, extra_params={ 'retrieval_question': 'What is the best thing to do in San Francisco?', 'needles': ['\nThe best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.\n'], 'context_lengths_min': 1000, 'context_lengths_max': 32000, 'context_lengths_num_intervals': 10, 'document_depth_percent_min': 0, 'document_depth_percent_max': 100, 'document_depth_percent_intervals': 10, 'tokenizer_path': 'Qwen/Qwen3-0.6B', 'show_score': False, }) class NeedleHaystackAdapter(DataAdapter): def __init__(self, **kwargs): super().__init__(**kwargs) self.llm_as_a_judge = True # set extra params extra_params = kwargs.get('extra_params', {}) self.retrieval_question = extra_params.get('retrieval_question', 'What is the best thing to do in San Francisco?') self.needles = extra_params.get( 'needles', ['\nThe best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.\n']) self.context_lengths_min = extra_params.get('context_lengths_min', 1000) self.context_lengths_max = extra_params.get('context_lengths_max', 32000) self.context_lengths_num_intervals = extra_params.get('context_lengths_num_intervals', 10) self.document_depth_percent_min = extra_params.get('document_depth_percent_min', 0) self.document_depth_percent_max = extra_params.get('document_depth_percent_max', 100) self.document_depth_percent_intervals = extra_params.get('document_depth_percent_intervals', 10) self.tokenizer_path = extra_params.get('tokenizer_path', 'Qwen/Qwen3-0.6B') self.show_score = extra_params.get('show_score', False) self._init_tokenizer() self._init_length() def _init_length(self): """ Initialize context lengths and document depth percentages based on the provided parameters.""" import numpy as np self.context_lengths = np.round( np.linspace( self.context_lengths_min, self.context_lengths_max, num=self.context_lengths_num_intervals, endpoint=True)).astype(int) self.document_depth_percents = np.round( np.linspace( self.document_depth_percent_min, self.document_depth_percent_max, num=self.document_depth_percent_intervals, endpoint=True)).astype(int) def _init_tokenizer(self): """ Initialize the tokenizer based on the provided tokenizer path.""" from modelscope import AutoTokenizer self.tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_path) def load(self, **kwargs): # default load with snapshot kwargs['file_structure'] = {'english': ['PaulGraham_Essays.txt'], 'chinese': ['Journey_to_the_West.txt']} data_dict = super().load_with_snapshot(**kwargs) return data_dict def gen_prompts(self, data_dict: dict) -> dict: """ Generate dataset prompts from raw input, unify the prompt format for different datasets. Args: data_dict: {'english': {'test': [sample_d_1, sample_d_2, ...]}, 'chinese': {'test': [sample_d_1, sample_d_2, ...]}} Returns: {'subset_name': [prompt_d_1, prompt_d_2, ...]} prompt_d_i (dict): refer to the output of gen_prompt method. e.g. train -- few-shot data, test -- target dataset to evaluate. """ res_dict: dict = {} for sub_name, sub_data_dict in data_dict.items(): res_dict[sub_name] = [] for sample_d in sub_data_dict[self.eval_split]: # Generate prompts for each sample in the dataset tokens_context = self._get_context_tokens(sample_d['text']) for context_length, depth_percent in tqdm( product(self.context_lengths, self.document_depth_percents), desc=f'Generating {sub_name} prompts'): # Insert needles into the context at the specified depth percentage context = self._insert_needles(tokens_context, depth_percent, context_length) # Build the input dictionary for the prompt input_d = { 'context_length': int(context_length), 'depth_percent': int(depth_percent), 'question': self.retrieval_question, 'answer': '\n'.join(self.needles), 'context': context, } prompt_d = self.gen_prompt(input_d=input_d) prompt_d[AnswerKeys.RAW_INPUT] = input_d res_dict[sub_name].append(prompt_d) return res_dict def _get_context_tokens(self, input_context: str) -> list: """ Encodes the context string into tokens using the tokenizer, ensuring the tokenized context is at least as long as the maximum context length required. Args: input_context (str): The context string to be tokenized. Returns: List[int]: A list of token IDs representing the context. """ max_context_length = max(self.context_lengths) context = input_context tokens_context = self.tokenizer.encode(context, add_special_tokens=False) # Repeat the context until reaching the required length while len(tokens_context) < max_context_length: context += '\n' + input_context tokens_context = self.tokenizer.encode(context, add_special_tokens=False) return tokens_context def _insert_needles(self, tokens_context, depth_percent, context_length): """ Inserts multiple needles (specific facts or pieces of information) into the original context string at designated depth percentages, effectively distributing these needles throughout the context. This method is designed to test a model's ability to retrieve specific information (needles) from a larger body of text (haystack) based on the placement depth of these needles. The method first encodes the context and each needle into tokens to calculate their lengths in tokens. It then adjusts the context length to accommodate the final buffer length. This is crucial for ensuring that the total token count (context plus needles) does not exceed the maximum allowable context length, which might otherwise lead to information being truncated. This approach calculates the initial insertion point for the first needle as before but then calculates even spacing for the remaining needles based on the remaining context length. It ensures that needles are distributed as evenly as possible throughout the context after the first insertion. Args: tokens_context (List[int]): The original context tokens. depth_percent (float): The depth percent at which to insert the needles. context_length (int): The total length of the context in tokens, adjusted for final buffer. Returns: str: The new context with needles inserted. """ context_length -= 150 # Calculate the total length of all needles in tokens total_needles_length = sum(len(self.tokenizer.encode(needle)) for needle in self.needles) # Ensure context length accounts for needles if len(tokens_context) + total_needles_length > context_length: tokens_context = tokens_context[:context_length - total_needles_length] # To evenly distribute the needles, we calculate the intervals they need to be inserted. depth_percent_interval = (100 - depth_percent) / len(self.needles) # Reset the insertion percentages list for the current context self.insertion_percentages = [] # Insert needles at calculated points for needle in self.needles: tokens_needle = self.tokenizer.encode(needle) if depth_percent == 100: # If your depth percent is 100 (which means your needle is the last thing in the doc), # throw it at the end tokens_context = tokens_context + tokens_needle else: # Go get the position (in terms of tokens) to insert your needle insertion_point = int(len(tokens_context) * (depth_percent / 100)) # tokens_new_context represents the tokens before the needle tokens_new_context = tokens_context[:insertion_point] # We want to make sure that we place our needle at a sentence break # so we first see what token a '.' is period_tokens = self.tokenizer.encode('.') + self.tokenizer.encode( '。') # Handle both English and Chinese periods # Then we iteration backwards until we find the first period while tokens_new_context and tokens_new_context[-1] not in period_tokens: insertion_point -= 1 tokens_new_context = tokens_context[:insertion_point] # Insert the needle into the context at the found position tokens_context = tokens_context[:insertion_point] + tokens_needle + tokens_context[insertion_point:] # Log insertion_percentage = (insertion_point / len(tokens_context)) * 100 self.insertion_percentages.append(insertion_percentage) logger.debug(f"Inserted '{needle}' at {insertion_percentage:.2f}% of the context, " f'total length now: {len(tokens_context)} tokens') # Adjust depth for next needle depth_percent += depth_percent_interval new_context = self.tokenizer.decode(tokens_context) return new_context def gen_prompt(self, input_d: dict, **kwargs) -> dict: """ Generate the prompt for each sample in the dataset. Args: input_d: A dictionary containing the input data for the prompt. It should contain 'context' and optionally 'question'. Returns: A dictionary containing the prompt data """ context = input_d.get('context') question = input_d.get('question') prompt = self.prompt_template.format(context=context, question=question) return self.gen_prompt_data(prompt, system_prompt=self.system_prompt) def get_gold_answer(self, input_d: dict) -> str: """ Parse the raw input labels (gold). """ return input_d.get('answer', '').strip() def parse_pred_result(self, result: str, raw_input_d: dict = None, eval_type: str = EvalType.CHECKPOINT) -> str: """ Parse the predicted result and extract proper answer. """ return result def match(self, gold: str, pred: str) -> float: """ Match the gold answer and the predicted answer. """ from .utils import normalize_answer norm_gold = normalize_answer(gold) norm_pred = normalize_answer(pred) # Use exact match for Needle in a Haystack return exact_match(gold=norm_gold, pred=norm_pred) def llm_match(self, gold: str, pred: str, judge: LLMJudge, **kwargs) -> dict: """ Use LLM as a judge to evaluate the predicted answer against the gold answer. """ from .utils import GENERAL_ORM_PROMPT, ORM_USER_TEMPLATE, parse_score raw_input = kwargs.get('raw_input', None) question = raw_input.get('question') context_length = raw_input.get('context_length') depth_percent = raw_input.get('depth_percent') # get grading response prompt = ORM_USER_TEMPLATE.format(question=question, gold=gold, pred=pred) orm_response = judge(prompt=prompt, system_prompt=GENERAL_ORM_PROMPT) # parse grading score with regex, [[score]] score = parse_score(orm_response) if orm_response else 0.0 return {f'Context#{context_length} Depth#{depth_percent}': score} def compute_metric(self, review_res_list: Union[List[dict], List[List[dict]]], **kwargs) -> List[dict]: """ compute weighted mean of the bleu score of all samples Args: review_res_list: [score1, score2, ...] Returns: avg_res: List[dict] """ items = super().compute_dict_metric(review_res_list, **kwargs) return [{'metric_name': k, 'score': mean(v), 'num': len(v)} for k, v in items.items()] def post_process_report(self, report: 'Report', **kwargs): try: import os from .utils import draw_score_chat report_path = kwargs.get('report_path') data_frame = report.to_dataframe() # split `Metric` to `Context` and `Depth` data_frame[['Context', 'Depth']] = data_frame['Metric'].str.split(' ', n=1, expand=True) data_frame['Depth'] = data_frame['Depth'].str.replace('Depth#', '').astype(float) data_frame['Context'] = data_frame['Context'].str.replace('Context#', '').astype(int) # split by `Subset` to multi sub data frame for subset in data_frame['Subset'].unique(): sub_df = data_frame[data_frame['Subset'] == subset] # draw charts for each subset pivot_table = sub_df.pivot_table( values='Score', index=['Depth', 'Context'], aggfunc='mean').reset_index() pivot_table = pivot_table.pivot(index='Depth', columns='Context', values='Score') draw_score_chat( pivot_table, outpath=os.path.join(report_path, f'needle_haystack_heatmap_{subset}.png'), show_score=self.show_score) except Exception as e: logger.error(f'Error generating charts: {e}')