evalscope_v0.17.0/evalscope.0.17.0/evalscope/backend/rag_eval/clip_benchmark/arguments.py

35 lines
1.5 KiB
Python

from dataclasses import dataclass, field
from typing import Dict, List
@dataclass
class Arguments:
# fmt: off
"""
A dataclass to store and manage the arguments for the model configuration and data processing.
"""
"""
For CLIP model support, you can use the following fields:
model_name: str
revision: str = "master"
hub: str = "modelscope"
For API VLM model support, you can use the following fields, (image caption only):
model_name="gpt-4o-mini"
api_base: str = "",
api_key: Optional[str] = None
prompt: str = None
"""
models: List[Dict] = field(default_factory=dict) # List of paths to the pre-trained models or model identifiers
dataset_name: List[str] = field(default_factory=list) # List of dataset names to be used
data_dir: str = None # Root directory where the datasets are stored
split: str = 'test' # Split of the dataset to be used (e.g., 'train', 'validation', 'test')
task: str = None
batch_size: int = 128 # Batch size for data loading
num_workers: int = 1 # Number of workers for data loading
verbose: bool = True # Flag to enable verbose logging
output_dir: str = 'outputs' # Directory where the outputs (e.g., predictions, logs) will be saved
cache_dir: str = 'cache' # Directory where the dataset cache will be stored
skip_existing: bool = False # Flag to skip processing if outputs already exist
limit: int = None # Limit the number of samples to be processed