evalscope_v0.17.0/evalscope.0.17.0/evalscope/benchmarks/iquiz/iquiz_adapter.py

71 lines
2.7 KiB
Python

from evalscope.benchmarks import Benchmark, DataAdapter
from evalscope.constants import EvalType, OutputType
from evalscope.metrics import exact_match
from evalscope.metrics.completion_parsers import ResponseParser
@Benchmark.register(
name='iquiz',
pretty_name='IQuiz',
tags=['Knowledge', 'MCQ', 'Chinese'],
description=
'IQuiz is a benchmark for evaluating AI models on IQ and EQ questions. It consists of multiple-choice questions where the model must select the correct answer and provide an explanation.', # noqa: E501
dataset_id='AI-ModelScope/IQuiz',
model_adapter=OutputType.GENERATION,
output_types=[OutputType.MULTIPLE_CHOICE, OutputType.GENERATION],
subset_list=['IQ', 'EQ'],
metric_list=['AverageAccuracy'],
few_shot_num=0,
train_split=None,
eval_split='test',
system_prompt='你是一个高智商和高情商的专家,你被要求回答一个选择题,并选出一个正确的选项,解释原因,最终输出格式为:`答案是(选项)`。', # noqa: E501
)
class IQuizAdapter(DataAdapter):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.choices = ['A', 'B', 'C', 'D', 'E']
def gen_prompt(self, input_d: dict, subset_name: str, few_shot_list: list, **kwargs) -> dict:
"""
Generate model prompt from input data.
example:
{
"question":"天气预报说本周星期三会下雨,昨天果然下雨了,今天星期几?",
"choices":["星期一","星期二","星期三","星期四"],
"answer":"D",
"level":1
}
"""
prompt = f"问题: {input_d['question']}\n"
prompt += self.__form_options(input_d['choices'])
return self.gen_prompt_data(prompt)
def __form_options(self, options: list):
option_str = '选项:\n'
for opt, choice in zip(options, self.choices):
option_str += f'({choice}): {opt}' + '\n'
return option_str
def get_gold_answer(self, input_d: dict) -> str:
"""
Parse the raw input labels (gold).
"""
return input_d['answer']
def parse_pred_result(self, result: str, raw_input_d: dict = None, eval_type: str = EvalType.CHECKPOINT) -> str:
"""
Parse the predicted result and extract proper answer.
"""
if self.model_adapter == OutputType.MULTIPLE_CHOICE:
return result
else:
return ResponseParser.parse_first_option_with_choices(result, self.choices)
def match(self, gold: str, pred: str) -> float:
"""
Match the gold answer and the predicted answer.
"""
return exact_match(gold=gold, pred=pred)