164 lines
6.7 KiB
Python
164 lines
6.7 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""TruthfulQA dataset."""
|
|
# flake8: noqa
|
|
|
|
import csv
|
|
import datasets
|
|
import json
|
|
|
|
_CITATION = """\
|
|
@misc{lin2021truthfulqa,
|
|
title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
|
|
author={Stephanie Lin and Jacob Hilton and Owain Evans},
|
|
year={2021},
|
|
eprint={2109.07958},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CL}
|
|
}
|
|
"""
|
|
|
|
_DESCRIPTION = """\
|
|
TruthfulQA is a benchmark to measure whether a language model is truthful in
|
|
generating answers to questions. The benchmark comprises 817 questions that
|
|
span 38 categories, including health, law, finance and politics. Questions are
|
|
crafted so that some humans would answer falsely due to a false belief or
|
|
misconception. To perform well, models must avoid generating false answers
|
|
learned from imitating human texts.
|
|
"""
|
|
|
|
_HOMEPAGE = 'https://github.com/sylinrl/TruthfulQA'
|
|
|
|
_LICENSE = 'Apache License 2.0'
|
|
|
|
|
|
class TruthfulQaConfig(datasets.BuilderConfig):
|
|
"""BuilderConfig for TruthfulQA."""
|
|
|
|
def __init__(self, url, features, **kwargs):
|
|
"""BuilderConfig for TruthfulQA.
|
|
Args:
|
|
url: *string*, the url to the configuration's data.
|
|
features: *list[string]*, list of features that'll appear in the feature dict.
|
|
**kwargs: keyword arguments forwarded to super.
|
|
"""
|
|
super().__init__(version=datasets.Version('1.1.0'), **kwargs)
|
|
self.url = url
|
|
self.features = features
|
|
|
|
|
|
class TruthfulQa(datasets.GeneratorBasedBuilder):
|
|
"""TruthfulQA is a benchmark to measure whether a language model is truthful in generating answers to questions."""
|
|
|
|
BUILDER_CONFIGS = [
|
|
TruthfulQaConfig(
|
|
name='generation',
|
|
# url="https://raw.githubusercontent.com/sylinrl/TruthfulQA/013686a06be7a7bde5bf8223943e106c7250123c/TruthfulQA.csv",
|
|
url='https://modelscope.oss-cn-beijing.aliyuncs.com/open_data/truthful_qa/TruthfulQA.csv',
|
|
features=datasets.Features({
|
|
'type': datasets.Value('string'),
|
|
'category': datasets.Value('string'),
|
|
'question': datasets.Value('string'),
|
|
'best_answer': datasets.Value('string'),
|
|
'correct_answers': datasets.features.Sequence(datasets.Value('string')),
|
|
'incorrect_answers': datasets.features.Sequence(datasets.Value('string')),
|
|
'source': datasets.Value('string'),
|
|
}),
|
|
description=
|
|
"The Generation TruthfulQA (main) task tests a model's ability to generate 1-2 sentence answers for a given question truthfully.",
|
|
),
|
|
TruthfulQaConfig(
|
|
name='multiple_choice',
|
|
# url="https://raw.githubusercontent.com/sylinrl/TruthfulQA/013686a06be7a7bde5bf8223943e106c7250123c/data/mc_task.json",
|
|
url='https://modelscope.oss-cn-beijing.aliyuncs.com/open_data/truthful_qa/mc_task.json',
|
|
features=datasets.Features({
|
|
'question': datasets.Value('string'),
|
|
'mc1_targets': {
|
|
'choices': datasets.features.Sequence(datasets.Value('string')),
|
|
'labels': datasets.features.Sequence(datasets.Value('int32')),
|
|
},
|
|
'mc2_targets': {
|
|
'choices': datasets.features.Sequence(datasets.Value('string')),
|
|
'labels': datasets.features.Sequence(datasets.Value('int32')),
|
|
},
|
|
}),
|
|
description=
|
|
"The Multiple-Choice TruthfulQA task provides a multiple-choice option to test a model's ability to identify true statements.",
|
|
),
|
|
]
|
|
|
|
def _info(self):
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=self.config.features,
|
|
homepage=_HOMEPAGE,
|
|
license=_LICENSE,
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
data_dir = dl_manager.download(self.config.url)
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.VALIDATION,
|
|
gen_kwargs={
|
|
'filepath': data_dir,
|
|
},
|
|
),
|
|
]
|
|
|
|
def _split_csv_list(self, csv_list: str, delimiter: str = ';') -> str:
|
|
"""
|
|
Splits a csv list field, delimited by `delimiter` (';'), into a list
|
|
of strings.
|
|
"""
|
|
csv_list = csv_list.strip().split(delimiter)
|
|
return [item.strip() for item in csv_list]
|
|
|
|
def _generate_examples(self, filepath):
|
|
if self.config.name == 'multiple_choice':
|
|
# Multiple choice data is in a `JSON` file.
|
|
with open(filepath, encoding='utf-8') as f:
|
|
contents = json.load(f)
|
|
for key, row in enumerate(contents):
|
|
yield key, {
|
|
'question': row['question'],
|
|
'mc1_targets': {
|
|
'choices': list(row['mc1_targets'].keys()),
|
|
'labels': list(row['mc1_targets'].values()),
|
|
},
|
|
'mc2_targets': {
|
|
'choices': list(row['mc2_targets'].keys()),
|
|
'labels': list(row['mc2_targets'].values()),
|
|
},
|
|
}
|
|
else:
|
|
# Generation data is in a `CSV` file.
|
|
with open(filepath, newline='', encoding='utf-8-sig') as f:
|
|
contents = csv.DictReader(f)
|
|
for key, row in enumerate(contents):
|
|
# Ensure that references exist.
|
|
if not row['Correct Answers'] or not row['Incorrect Answers']:
|
|
continue
|
|
yield key, {
|
|
'type': row['Type'],
|
|
'category': row['Category'],
|
|
'question': row['Question'],
|
|
'best_answer': row['Best Answer'],
|
|
'correct_answers': self._split_csv_list(row['Correct Answers']),
|
|
'incorrect_answers': self._split_csv_list(row['Incorrect Answers']),
|
|
'source': row['Source'],
|
|
}
|