evalscope_v0.17.0/evalscope.0.17.0/evalscope/metrics/t2v_metrics/models/model.py

46 lines
1.3 KiB
Python

import numpy as np
import os
import torch
from abc import ABC, abstractmethod
from PIL import Image
from typing import List
from ..constants import CACHE_DIR
def image_loader(image_path):
if image_path.split('.')[-1] == 'npy':
return Image.fromarray(np.load(image_path)[:, :, [2, 1, 0]], 'RGB')
else:
return Image.open(image_path).convert('RGB')
class ScoreModel(ABC):
def __init__(self, model_name='clip-flant5-xxl', device='cuda', cache_dir=CACHE_DIR):
self.model_name = model_name
self.device = device
self.cache_dir = cache_dir
if not os.path.exists(self.cache_dir):
os.makedirs(self.cache_dir)
self.image_loader = image_loader
self.load_model()
@abstractmethod
def load_model(self):
"""Load the model, tokenizer, and etc.
"""
pass
@abstractmethod
def load_images(self, image: List[str]) -> torch.Tensor:
"""Load the image(s), and return a tensor (after preprocessing) put on self.device
"""
pass
@abstractmethod
def forward(self, images: List[str], texts: List[str], **kwargs) -> torch.Tensor:
"""Forward pass of the model to return n scores for n (image, text) pairs (in PyTorch Tensor)
"""
pass