evalscope_v0.17.0/evalscope.0.17.0/evalscope/third_party/toolbench_static/infer.py

258 lines
8.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) Alibaba, Inc. and its affiliates.
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Make it more memory efficient by monkey patching the LLaMA model with FlashAttn.
import json
import os
import requests
import time
from dataclasses import dataclass, field
from rouge import Rouge
from urllib3.exceptions import MaxRetryError, NewConnectionError
def evaluate_rouge_l(cand_list: list, ref_list: list):
if len(ref_list) == 0:
return 0
rouge = Rouge()
rouge_score = rouge.get_scores(hyps=cand_list, refs=ref_list, avg=True)
rougel = rouge_score['rouge-l']['f']
return rougel
def nested_load_test_data(data_path):
test_raw_data = []
if os.path.isdir(data_path):
for f in os.listdir(data_path):
temp_test = nested_load_test_data(os.path.join(data_path, f))
test_raw_data += temp_test
return test_raw_data
elif os.path.isfile(data_path) and data_path.endswith('.json'):
print('Load data from', data_path)
temp_data = json.load(open(data_path, 'r'))
test_raw_data = temp_data
return test_raw_data
else:
return []
def baichuan_call(context: list, system: str):
url = 'https://api.baichuan-ai.com/v1/chat/completions'
api_key = 'sk-xxx'
new_msg = []
new_msg.append({'role': 'system', 'content': system})
for m in context:
if m['role'] == 'user':
new_msg.append({'role': 'user', 'content': m['content']})
elif m['role'] == 'function':
new_msg.append({'role': 'user', 'content': m['content']})
elif m['role'] == 'assistant':
new_msg.append({'role': 'assistant', 'content': m['content']})
# print(json.dumps(new_msg, indent=2))
data = {'model': 'Baichuan2-Turbo', 'messages': new_msg, 'stream': False}
json_data = json.dumps(data)
headers = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + api_key}
for i in range(5):
res = None
try:
res = requests.post(url, data=json_data, headers=headers, timeout=60)
res = res._content.decode('utf-8')
res = json.loads(res)
return res['choices'][0]['message']['content']
except KeyError:
print(res)
time.sleep(1)
continue
except ConnectionError:
time.sleep(5)
continue
except MaxRetryError:
time.sleep(5)
continue
except NewConnectionError:
time.sleep(5)
continue
return ''
def minimax_call(context: list, system: str):
group_id = 'your-id'
api_key = 'your-xxx'
url = f'https://api.minimax.chat/v1/text/chatcompletion_pro?GroupId={group_id}'
headers = {'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json'}
# construct message
system_prompt = 'MM智能助理是一款由MiniMax自研的没有调用其他产品的接口的大型语言模型。' \
'MiniMax是一家中国科技公司一直致力于进行大模型相关的研究。'
system_prompt += ('\n' + system)
new_msg = []
for m in context:
if m['role'] == 'user':
new_msg.append({'sender_type': 'USER', 'sender_name': 'user', 'text': m['content']})
elif m['role'] == 'function':
new_msg.append({'sender_type': 'USER', 'sender_name': 'funtion', 'text': m['content']})
elif m['role'] == 'assistant':
new_msg.append({'sender_type': 'BOT', 'sender_name': 'MM智能助理', 'text': m['content']})
request_body = {
'model': 'abab6-chat',
# "model": "abab5.5s-chat",
'tokens_to_generate': 8192,
'reply_constraints': {
'sender_type': 'BOT',
'sender_name': 'MM智能助理'
},
'messages': new_msg,
'bot_setting': [{
'bot_name': 'MM智能助理',
'content': system_prompt,
}],
}
response = requests.post(url, headers=headers, json=request_body)
status_code = response.status_code
for i in range(5):
try:
if status_code == 200:
reply = response.json()['reply']
if len(reply) == 0:
print('limit rate')
time.sleep(8)
continue
print(f'>>return: {reply}')
return reply
else:
print(response._content)
time.sleep(5)
except KeyError:
print(response)
time.sleep(5)
continue
return ''
def swift_call(context: list, system: str, swift_infer_obj):
query_d: dict = context[-1]
history_list = context[:-1]
query: str = query_d['content']
history_msg = []
tmp_list = []
for idx, item in enumerate(history_list):
if idx % 2 == 0:
tmp_list.append(item['content'])
else:
tmp_list.append(item['content'])
history_msg.append(tuple(tmp_list))
tmp_list = []
try:
resp_str: str = swift_infer_obj.predict(system=system, query=query, history=history_msg)
except Exception as e:
print(e)
resp_str = ''
return resp_str
@dataclass
class InferArgs:
model_name_or_path: str
model_type: str
data_path: str
output_dir: str
deploy_type: str
max_new_tokens: int = 2048
num_infer_samples: int = None
def run_infer(args: InferArgs):
if args.deploy_type == 'swift':
from evalscope.third_party.toolbench_static.llm.swift_infer import SwiftInfer, SwiftInferArgs
swift_infer_args = SwiftInferArgs(
model_id_or_path=args.model_name_or_path, model_type=args.model_type, max_new_tokens=args.max_new_tokens)
swift_infer = SwiftInfer(args=swift_infer_args)
else:
swift_infer = None
# load data
infer_samples = nested_load_test_data(args.data_path)
if args.num_infer_samples is not None:
infer_samples = infer_samples[:args.num_infer_samples]
os.makedirs(args.output_dir, exist_ok=True)
if os.path.exists(os.path.join(args.output_dir, 'predictions.json')):
with open(os.path.join(args.output_dir, 'predictions.json')) as f:
processed_samples = json.load(f)
else:
processed_samples = []
preds = []
refs = []
for i, o in enumerate(infer_samples):
if i < len(processed_samples) and 'predictions' in processed_samples[i].keys():
infer_samples[i]['predictions'] = processed_samples[i]['predictions']
refs.append(processed_samples[i]['target'])
preds.append(processed_samples[i]['predictions'])
continue
system = o['messages'][0]['content']
new_msg = o['messages'][1:]
print('================================')
print('case', str(i))
if args.deploy_type == 'minimax':
response_text = minimax_call(new_msg, system)
# elif model_args.model_type == 'xingchen':
# response_text = spark_call(new_msg, system)
# elif model_args.model_type == 'xingchen_v2':
# response_text = spark_call_v2(new_msg, system, model_args)
elif args.deploy_type == 'baichuan':
response_text = baichuan_call(new_msg, system)
elif args.deploy_type == 'swift':
assert swift_infer is not None, 'ModelScope Swift infer process is not initialized.'
response_text = swift_call(new_msg, system, swift_infer)
else:
raise NotImplementedError
candidate = response_text
print(candidate)
if candidate.startswith(': '):
candidate = candidate[2:]
if candidate.strip() in ['', '.', ',']:
candidate = 'none'
reference = infer_samples[i]['target']
infer_samples[i]['predictions'] = candidate
if reference.strip() in ['', '.', ',']:
reference = 'none'
refs.append(reference)
preds.append(candidate)
with open(os.path.join(args.output_dir, 'predictions.json'), 'w') as f:
json.dump(infer_samples[:i + 1], f, indent=4)
rouge_l = round(evaluate_rouge_l(preds, refs), 2)
print('\n*** Overall rouge:', rouge_l)