This commit is contained in:
parent
301795569c
commit
01f2317bcc
|
|
@ -1,12 +1,13 @@
|
||||||
import os
|
import os
|
||||||
|
|
||||||
from llama_index.core import (
|
from llama_index import (
|
||||||
SimpleDirectoryReader,
|
SimpleDirectoryReader,
|
||||||
VectorStoreIndex,
|
VectorStoreIndex,
|
||||||
|
PromptHelper,
|
||||||
PromptTemplate,
|
PromptTemplate,
|
||||||
Settings,
|
ServiceContext,
|
||||||
)
|
)
|
||||||
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
from llama_index.embeddings.base import BaseEmbedding
|
||||||
from llama_index.vector_stores.faiss import FaissVectorStore
|
from llama_index.vector_stores.faiss import FaissVectorStore
|
||||||
from app.core.config import settings
|
from app.core.config import settings
|
||||||
from scripts.permissions import get_user_allowed_indexes
|
from scripts.permissions import get_user_allowed_indexes
|
||||||
|
|
@ -15,18 +16,31 @@ import faiss
|
||||||
USER_INDEX_PATH = "index_data"
|
USER_INDEX_PATH = "index_data"
|
||||||
USER_DOC_PATH = "docs"
|
USER_DOC_PATH = "docs"
|
||||||
|
|
||||||
|
class CustomEmbedding(BaseEmbedding):
|
||||||
|
def __init__(self, model_name: str):
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
self.model = SentenceTransformer(model_name)
|
||||||
|
|
||||||
|
def embed(self, text: str):
|
||||||
|
return self.model.encode(text).tolist()
|
||||||
|
|
||||||
|
def embed_batch(self, texts: list):
|
||||||
|
return self.model.encode(texts).tolist()
|
||||||
|
|
||||||
def build_user_index(user_id: str):
|
def build_user_index(user_id: str):
|
||||||
doc_dir = os.path.join(USER_DOC_PATH, user_id)
|
doc_dir = os.path.join(USER_DOC_PATH, user_id)
|
||||||
if not os.path.exists(doc_dir):
|
if not os.path.exists(doc_dir):
|
||||||
raise FileNotFoundError(f"文档目录不存在: {doc_dir}")
|
raise FileNotFoundError(f"文档目录不存在: {doc_dir}")
|
||||||
|
|
||||||
documents = SimpleDirectoryReader(doc_dir).load_data()
|
documents = SimpleDirectoryReader(doc_dir).load_data()
|
||||||
embed_model = HuggingFaceEmbedding(model_name=settings.MODEL_NAME)
|
embed_model = CustomEmbedding(model_name=settings.MODEL_NAME)
|
||||||
Settings.embed_model = embed_model # ✅ 新式配置
|
|
||||||
|
service_context = ServiceContext.from_defaults(embed_model=embed_model)
|
||||||
|
|
||||||
index = VectorStoreIndex.from_documents(
|
index = VectorStoreIndex.from_documents(
|
||||||
documents,
|
documents,
|
||||||
vector_store=FaissVectorStore()
|
vector_store=FaissVectorStore(),
|
||||||
|
service_context=service_context
|
||||||
)
|
)
|
||||||
|
|
||||||
index_path = os.path.join(USER_INDEX_PATH, f"{user_id}.index")
|
index_path = os.path.join(USER_INDEX_PATH, f"{user_id}.index")
|
||||||
|
|
@ -34,8 +48,8 @@ def build_user_index(user_id: str):
|
||||||
print(f"[BUILD] 为用户 {user_id} 构建并保存了索引 → {index_path}")
|
print(f"[BUILD] 为用户 {user_id} 构建并保存了索引 → {index_path}")
|
||||||
|
|
||||||
def query_user_rag(user_id: str, question: str, top_k: int = 4) -> str:
|
def query_user_rag(user_id: str, question: str, top_k: int = 4) -> str:
|
||||||
embed_model = HuggingFaceEmbedding(model_name=settings.MODEL_NAME)
|
embed_model = CustomEmbedding(model_name=settings.MODEL_NAME)
|
||||||
Settings.embed_model = embed_model # ✅ 全局设置一次即可
|
service_context = ServiceContext.from_defaults(embed_model=embed_model)
|
||||||
|
|
||||||
all_nodes = []
|
all_nodes = []
|
||||||
|
|
||||||
|
|
@ -44,7 +58,7 @@ def query_user_rag(user_id: str, question: str, top_k: int = 4) -> str:
|
||||||
if not os.path.exists(index_path):
|
if not os.path.exists(index_path):
|
||||||
raise FileNotFoundError(f"[ERROR] 用户 {user_id} 的索引不存在")
|
raise FileNotFoundError(f"[ERROR] 用户 {user_id} 的索引不存在")
|
||||||
user_store = FaissVectorStore.from_persist_path(index_path)
|
user_store = FaissVectorStore.from_persist_path(index_path)
|
||||||
user_index = VectorStoreIndex.from_vector_store(user_store)
|
user_index = VectorStoreIndex.from_vector_store(user_store, service_context=service_context)
|
||||||
all_nodes += user_index.as_retriever(similarity_top_k=top_k).retrieve(question)
|
all_nodes += user_index.as_retriever(similarity_top_k=top_k).retrieve(question)
|
||||||
|
|
||||||
# 加载共享索引
|
# 加载共享索引
|
||||||
|
|
@ -54,7 +68,7 @@ def query_user_rag(user_id: str, question: str, top_k: int = 4) -> str:
|
||||||
shared_path = os.path.join(USER_INDEX_PATH, shared_name)
|
shared_path = os.path.join(USER_INDEX_PATH, shared_name)
|
||||||
if os.path.exists(shared_path) and shared_path != index_path:
|
if os.path.exists(shared_path) and shared_path != index_path:
|
||||||
shared_store = FaissVectorStore.from_persist_path(shared_path)
|
shared_store = FaissVectorStore.from_persist_path(shared_path)
|
||||||
shared_index = VectorStoreIndex.from_vector_store(shared_store)
|
shared_index = VectorStoreIndex.from_vector_store(shared_store, service_context=service_context)
|
||||||
all_nodes += shared_index.as_retriever(similarity_top_k=top_k).retrieve(question)
|
all_nodes += shared_index.as_retriever(similarity_top_k=top_k).retrieve(question)
|
||||||
else:
|
else:
|
||||||
print(f"[INFO] 用户 {user_id} 没有共享索引权限")
|
print(f"[INFO] 用户 {user_id} 没有共享索引权限")
|
||||||
|
|
@ -63,7 +77,7 @@ def query_user_rag(user_id: str, question: str, top_k: int = 4) -> str:
|
||||||
sorted_nodes = sorted(all_nodes, key=lambda n: -(n.score or 0))
|
sorted_nodes = sorted(all_nodes, key=lambda n: -(n.score or 0))
|
||||||
top_nodes = sorted_nodes[:top_k]
|
top_nodes = sorted_nodes[:top_k]
|
||||||
|
|
||||||
context_str = "\n\n".join([n.get_content() for n in top_nodes])
|
context_str = "\n\n".join([n.get_text() for n in top_nodes])
|
||||||
prompt_template = PromptTemplate(
|
prompt_template = PromptTemplate(
|
||||||
"请根据以下内容回答用户问题:\n\n{context}\n\n问题:{query}"
|
"请根据以下内容回答用户问题:\n\n{context}\n\n问题:{query}"
|
||||||
)
|
)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue