This commit is contained in:
hailin 2025-05-08 16:19:19 +08:00
parent ef7871eabd
commit 3a1fc39c48
3 changed files with 21 additions and 15 deletions

View File

@ -1,4 +1,4 @@
from pydantic import BaseSettings
from pydantic_settings import BaseSettings
import os
class Settings(BaseSettings):
@ -6,7 +6,7 @@ class Settings(BaseSettings):
EMBEDDING_DIM: int = 768
TOP_K: int = 5
DOC_PATH: str = "docs/"
DEVICE: str = "cpu" # 可设置为 cuda:0
DEVICE: str = "cpu"
MODEL_NAME: str = "BAAI/bge-m3"
settings = Settings()
settings = Settings()

View File

@ -5,4 +5,5 @@ gunicorn
pydantic
numpy
transformers
torch
torch
llama-index==0.12.34

View File

@ -9,10 +9,9 @@ from llama_index import (
)
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.llms.base import ChatMessage
from app.core.config import settings
from scripts.permissions import get_user_allowed_indexes
# 假设你要用的本地嵌入模型
EMBED_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
USER_INDEX_PATH = "index_data"
USER_DOC_PATH = "docs"
@ -22,7 +21,7 @@ def build_user_index(user_id: str):
raise FileNotFoundError(f"文档目录不存在: {doc_dir}")
documents = SimpleDirectoryReader(doc_dir).load_data()
embed_model = HuggingFaceEmbedding(model_name=EMBED_MODEL_NAME)
embed_model = HuggingFaceEmbedding(model_name=settings.MODEL_NAME)
service_context = ServiceContext.from_defaults(embed_model=embed_model)
# 构建向量索引
@ -37,22 +36,28 @@ def build_user_index(user_id: str):
faiss.write_index(index.vector_store.index, index_path)
print(f"[BUILD] 为用户 {user_id} 构建并保存了索引 → {index_path}")
from scripts.permissions import get_user_allowed_indexes
def query_user_rag(user_id: str, question: str, top_k: int = 4) -> str:
index_path = os.path.join(USER_INDEX_PATH, f"{user_id}.index")
if not os.path.exists(index_path):
raise FileNotFoundError(f"[ERROR] 用户 {user_id} 的索引不存在")
embed_model = HuggingFaceEmbedding(model_name=EMBED_MODEL_NAME)
embed_model = HuggingFaceEmbedding(model_name=settings.MODEL_NAME)
service_context = ServiceContext.from_defaults(embed_model=embed_model)
# 加载索引
# 加载索引
vector_store = FaissVectorStore.from_persist_path(index_path)
index = VectorStoreIndex.from_vector_store(vector_store, service_context=service_context)
retriever = index.as_retriever(similarity_top_k=top_k)
nodes = retriever.retrieve(question)
nodes = index.as_retriever(similarity_top_k=top_k).retrieve(question)
# 加载权限范围内的共享索引
shared_indexes = get_user_allowed_indexes(user_id)
for shared_name in shared_indexes:
shared_path = os.path.join(USER_INDEX_PATH, shared_name)
if os.path.exists(shared_path):
shared_store = FaissVectorStore.from_persist_path(shared_path)
shared_index = VectorStoreIndex.from_vector_store(shared_store, service_context=service_context)
nodes += shared_index.as_retriever(similarity_top_k=top_k).retrieve(question)
# 构造 Prompt
context_str = "\n\n".join([n.get_content() for n in nodes])
@ -73,4 +78,4 @@ if __name__ == "__main__":
build_user_index(uid)
prompt = query_user_rag(uid, "这份资料中提到了哪些关键点?")
print("\n------ 最终构建的 Prompt 给 LLM 使用 ------\n")
print(prompt)
print(prompt)