diff --git a/scripts/rag_build_query.py b/scripts/rag_build_query.py index 8445070..e57a3b8 100644 --- a/scripts/rag_build_query.py +++ b/scripts/rag_build_query.py @@ -19,7 +19,7 @@ class BGEEmbedding(HuggingFaceEmbedding): prefix = "Represent this sentence for searching relevant passages: " return super()._get_query_embedding(prefix + query) - def _get_query_embeddings(self, queries: List[str]) -> List[List[float]]: + def _get_query_embeddings(self, queries: List[str]) -> List[List[float]]]: # 批量生成嵌入向量 prefix = "Represent this sentence for searching relevant passages: " return super()._get_query_embeddings([prefix + q for q in queries]) @@ -89,13 +89,13 @@ def build_user_index(user_id: str): ) try: - # 构建索引,并使用 `save()` 方法保存索引 + # 构建索引,并使用 `storage_context.persist()` 方法保存索引 index = VectorStoreIndex.from_documents( documents, service_context=service_context, storage_context=storage_context ) - index.save(persist_dir=persist_dir) # 使用 `save()` 方法代替 `persist()` + storage_context.persist(persist_dir=persist_dir) # 使用 `storage_context.persist()` 保存索引 logger.info(f"索引已保存到 {persist_dir}") except Exception as e: logger.error(f"索引构建失败: {e}")