This commit is contained in:
parent
79c176c1d3
commit
a3b6021762
|
|
@ -1,15 +1,12 @@
|
|||
import os
|
||||
from typing import List
|
||||
import asyncio
|
||||
import faiss
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
from llama_index import (
|
||||
SimpleDirectoryReader,
|
||||
VectorStoreIndex,
|
||||
PromptHelper,
|
||||
PromptTemplate,
|
||||
ServiceContext,
|
||||
PromptTemplate,
|
||||
StorageContext,
|
||||
)
|
||||
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
||||
from llama_index.vector_stores.faiss import FaissVectorStore
|
||||
|
|
@ -19,7 +16,7 @@ from scripts.permissions import get_user_allowed_indexes
|
|||
USER_INDEX_PATH = "index_data"
|
||||
USER_DOC_PATH = "docs"
|
||||
|
||||
# ✅ BGE-m3 模型嵌入类,加前缀
|
||||
# ✅ 自动加前缀的 bge-m3 embedding
|
||||
class BGEEmbedding(HuggingFaceEmbedding):
|
||||
def _get_query_embedding(self, query: str) -> List[float]:
|
||||
prefix = "Represent this sentence for searching relevant passages: "
|
||||
|
|
@ -33,44 +30,47 @@ def build_user_index(user_id: str):
|
|||
doc_dir = os.path.join(USER_DOC_PATH, user_id)
|
||||
if not os.path.exists(doc_dir):
|
||||
raise FileNotFoundError(f"文档目录不存在: {doc_dir}")
|
||||
|
||||
|
||||
documents = SimpleDirectoryReader(doc_dir).load_data()
|
||||
embed_model = BGEEmbedding(model_name=settings.MODEL_NAME)
|
||||
service_context = ServiceContext.from_defaults(embed_model=embed_model, llm=None)
|
||||
|
||||
faiss_index = faiss.IndexFlatL2(1024) # ✅ bge-m3 是 1024维
|
||||
faiss_index = faiss.IndexFlatL2(1024)
|
||||
vector_store = FaissVectorStore(faiss_index=faiss_index)
|
||||
persist_dir = os.path.join(USER_INDEX_PATH, user_id)
|
||||
storage_context = StorageContext.from_defaults(
|
||||
persist_dir=persist_dir,
|
||||
vector_store=vector_store
|
||||
)
|
||||
|
||||
index = VectorStoreIndex.from_documents(
|
||||
documents,
|
||||
vector_store=vector_store,
|
||||
storage_context=storage_context,
|
||||
service_context=service_context
|
||||
)
|
||||
|
||||
index_path = os.path.join(USER_INDEX_PATH, f"{user_id}.index")
|
||||
faiss.write_index(faiss_index, index_path) # ✅ 改这里,直接写 faiss_index
|
||||
print(f"[BUILD] 为用户 {user_id} 构建并保存了索引 → {index_path}")
|
||||
index.persist(persist_dir=persist_dir)
|
||||
print(f"[BUILD] 为用户 {user_id} 构建并保存了完整索引 → {persist_dir}")
|
||||
|
||||
def query_user_rag(user_id: str, question: str, top_k: int = 4) -> str:
|
||||
embed_model = BGEEmbedding(model_name=settings.MODEL_NAME)
|
||||
service_context = ServiceContext.from_defaults(embed_model=embed_model, llm=None)
|
||||
|
||||
all_nodes = []
|
||||
persist_dir = os.path.join(USER_INDEX_PATH, user_id)
|
||||
if not os.path.exists(persist_dir):
|
||||
raise FileNotFoundError(f"[ERROR] 用户 {user_id} 的索引目录不存在")
|
||||
|
||||
index_path = os.path.join(USER_INDEX_PATH, f"{user_id}.index")
|
||||
if not os.path.exists(index_path):
|
||||
raise FileNotFoundError(f"[ERROR] 用户 {user_id} 的索引不存在")
|
||||
user_store = FaissVectorStore.from_persist_path(index_path)
|
||||
user_index = VectorStoreIndex.from_vector_store(user_store, service_context=service_context)
|
||||
all_nodes += user_index.as_retriever(similarity_top_k=top_k).retrieve(question)
|
||||
storage_context = StorageContext.from_defaults(persist_dir=persist_dir)
|
||||
index = VectorStoreIndex.load_from_storage(storage_context, service_context=service_context)
|
||||
|
||||
all_nodes = index.as_retriever(similarity_top_k=top_k).retrieve(question)
|
||||
|
||||
shared_indexes = get_user_allowed_indexes(user_id)
|
||||
if shared_indexes:
|
||||
for shared_name in shared_indexes:
|
||||
shared_path = os.path.join(USER_INDEX_PATH, shared_name)
|
||||
if os.path.exists(shared_path) and shared_path != index_path:
|
||||
shared_store = FaissVectorStore.from_persist_path(shared_path)
|
||||
shared_index = VectorStoreIndex.from_vector_store(shared_store, service_context=service_context)
|
||||
if os.path.exists(shared_path) and shared_path != persist_dir:
|
||||
shared_storage = StorageContext.from_defaults(persist_dir=shared_path)
|
||||
shared_index = VectorStoreIndex.load_from_storage(shared_storage, service_context=service_context)
|
||||
all_nodes += shared_index.as_retriever(similarity_top_k=top_k).retrieve(question)
|
||||
else:
|
||||
print(f"[INFO] 用户 {user_id} 没有共享索引权限")
|
||||
|
|
@ -82,15 +82,11 @@ def query_user_rag(user_id: str, question: str, top_k: int = 4) -> str:
|
|||
prompt_template = PromptTemplate(
|
||||
"请根据以下内容回答用户问题:\n\n{context}\n\n问题:{query}"
|
||||
)
|
||||
final_prompt = prompt_template.format(
|
||||
context=context_str,
|
||||
query=question,
|
||||
)
|
||||
final_prompt = prompt_template.format(context=context_str, query=question)
|
||||
|
||||
print("[PROMPT构建完成]")
|
||||
return final_prompt
|
||||
|
||||
# 示例:
|
||||
if __name__ == "__main__":
|
||||
uid = "user_001"
|
||||
build_user_index(uid)
|
||||
|
|
|
|||
Loading…
Reference in New Issue