diff --git a/app/api/search.py b/app/api/search.py index b62c9df..ae12f5f 100644 --- a/app/api/search.py +++ b/app/api/search.py @@ -57,7 +57,7 @@ def search_docs(request: QueryRequest, user_id: str = Query(..., description=" logger.info("VectorStoreIndex loaded successfully.") # 将用户查询通过本地模型生成嵌入向量 - query_vector = embedder._get_query_embedding(request.query) # 使用本地模型生成查询的嵌入向量 + query_vector = embedder.encode([request.query]) # 使用本地模型生成查询的嵌入向量 logger.info(f"Generated query embedding: {query_vector}") # 使用 FaissVectorStore 检索最相似的节点 diff --git a/app/core/embedding.py b/app/core/embedding.py index 86ddb8a..e3aa4ca 100644 --- a/app/core/embedding.py +++ b/app/core/embedding.py @@ -28,3 +28,4 @@ class BGEEmbedding: return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) embedder = BGEEmbedding() +