This commit is contained in:
parent
979e14430e
commit
cdc9650067
|
|
@ -34,24 +34,40 @@ logger.setLevel(logging.INFO)
|
||||||
# BGEEmbedding 类,继承自 HuggingFaceEmbedding,用于生成查询的嵌入
|
# BGEEmbedding 类,继承自 HuggingFaceEmbedding,用于生成查询的嵌入
|
||||||
class BGEEmbedding(HuggingFaceEmbedding):
|
class BGEEmbedding(HuggingFaceEmbedding):
|
||||||
def _get_query_embedding(self, query: str) -> List[float]:
|
def _get_query_embedding(self, query: str) -> List[float]:
|
||||||
# 在查询前加上前缀,生成嵌入向量
|
try:
|
||||||
prefix = "Represent this sentence for searching relevant passages: "
|
# 在查询前加上前缀,生成嵌入向量
|
||||||
embedding = super()._get_query_embedding(prefix + query)
|
logger.info("Calling _get_query_embedding method...")
|
||||||
|
prefix = "Represent this sentence for searching relevant passages: "
|
||||||
|
embedding = super()._get_query_embedding(prefix + query)
|
||||||
|
|
||||||
# 使用logger打印数据类型
|
# 转换为 float32 类型
|
||||||
logger.info(f"Query embedding dtype: {embedding.dtype}")
|
embedding = np.array(embedding, dtype=np.float32)
|
||||||
return embedding
|
|
||||||
|
# 使用 logger 打印数据类型
|
||||||
|
logger.info(f"Query embedding dtype after conversion: {embedding.dtype}")
|
||||||
|
return embedding
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in _get_query_embedding: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
def _get_query_embeddings(self, queries: List[str]) -> List[List[float]]:
|
def _get_query_embeddings(self, queries: List[str]) -> List[List[float]]:
|
||||||
# 批量生成嵌入向量
|
try:
|
||||||
prefix = "Represent this sentence for searching relevant passages: "
|
# 批量生成嵌入向量
|
||||||
embeddings = super()._get_query_embeddings([prefix + q for q in queries])
|
logger.info("Calling _get_query_embeddings method...")
|
||||||
|
prefix = "Represent this sentence for searching relevant passages: "
|
||||||
|
embeddings = super()._get_query_embeddings([prefix + q for q in queries])
|
||||||
|
|
||||||
# 使用logger打印数据类型
|
# 转换为 float32 类型
|
||||||
logger.info(f"Batch query embeddings dtype: {embeddings[0].dtype}")
|
embeddings = [np.array(embedding, dtype=np.float32) for embedding in embeddings]
|
||||||
return embeddings
|
|
||||||
|
|
||||||
|
# 使用 logger 打印数据类型
|
||||||
|
logger.info(f"Batch query embeddings dtype after conversion: {embeddings[0].dtype}")
|
||||||
|
return embeddings
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in _get_query_embeddings: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
def build_user_index(user_id: str):
|
def build_user_index(user_id: str):
|
||||||
logger.info(f"开始为用户 {user_id} 构建索引...")
|
logger.info(f"开始为用户 {user_id} 构建索引...")
|
||||||
|
|
||||||
|
|
@ -81,7 +97,7 @@ def build_user_index(user_id: str):
|
||||||
# 直接检查模型嵌入方法是否被调用
|
# 直接检查模型嵌入方法是否被调用
|
||||||
logger.info(f"Embedding method being used: {embed_model._get_query_embedding('test query')}")
|
logger.info(f"Embedding method being used: {embed_model._get_query_embedding('test query')}")
|
||||||
|
|
||||||
|
|
||||||
# 使用 Faiss 向量存储
|
# 使用 Faiss 向量存储
|
||||||
faiss_index = faiss.IndexFlatL2(1024)
|
faiss_index = faiss.IndexFlatL2(1024)
|
||||||
vector_store = FaissVectorStore(faiss_index=faiss_index)
|
vector_store = FaissVectorStore(faiss_index=faiss_index)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue