"""ReAct agent worker.""" import asyncio import uuid from itertools import chain from threading import Thread from typing import ( Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence, Tuple, cast, ) from llama_index.agent.react.formatter import ReActChatFormatter from llama_index.agent.react.output_parser import ReActOutputParser from llama_index.agent.react.types import ( ActionReasoningStep, BaseReasoningStep, ObservationReasoningStep, ResponseReasoningStep, ) from llama_index.agent.types import ( BaseAgentWorker, Task, TaskStep, TaskStepOutput, ) from llama_index.callbacks import ( CallbackManager, CBEventType, EventPayload, trace_method, ) from llama_index.chat_engine.types import ( AGENT_CHAT_RESPONSE_TYPE, AgentChatResponse, StreamingAgentChatResponse, ) from llama_index.core.llms.types import MessageRole from llama_index.llms.base import ChatMessage, ChatResponse from llama_index.llms.llm import LLM from llama_index.llms.openai import OpenAI from llama_index.memory.chat_memory_buffer import ChatMemoryBuffer from llama_index.memory.types import BaseMemory from llama_index.objects.base import ObjectRetriever from llama_index.prompts.base import PromptTemplate from llama_index.prompts.mixin import PromptDictType from llama_index.tools import BaseTool, ToolOutput, adapt_to_async_tool from llama_index.tools.types import AsyncBaseTool from llama_index.utils import print_text, unit_generator DEFAULT_MODEL_NAME = "gpt-3.5-turbo-0613" def add_user_step_to_reasoning( step: TaskStep, memory: BaseMemory, current_reasoning: List[BaseReasoningStep], verbose: bool = False, ) -> None: """Add user step to memory.""" if "is_first" in step.step_state and step.step_state["is_first"]: # add to new memory memory.put(ChatMessage(content=step.input, role=MessageRole.USER)) step.step_state["is_first"] = False else: reasoning_step = ObservationReasoningStep(observation=step.input) current_reasoning.append(reasoning_step) if verbose: print(f"Added user message to memory: {step.input}") class ReActAgentWorker(BaseAgentWorker): """OpenAI Agent worker.""" def __init__( self, tools: Sequence[BaseTool], llm: LLM, max_iterations: int = 10, react_chat_formatter: Optional[ReActChatFormatter] = None, output_parser: Optional[ReActOutputParser] = None, callback_manager: Optional[CallbackManager] = None, verbose: bool = False, tool_retriever: Optional[ObjectRetriever[BaseTool]] = None, ) -> None: self._llm = llm self.callback_manager = callback_manager or llm.callback_manager self._max_iterations = max_iterations self._react_chat_formatter = react_chat_formatter or ReActChatFormatter() self._output_parser = output_parser or ReActOutputParser() self._verbose = verbose if len(tools) > 0 and tool_retriever is not None: raise ValueError("Cannot specify both tools and tool_retriever") elif len(tools) > 0: self._get_tools = lambda _: tools elif tool_retriever is not None: tool_retriever_c = cast(ObjectRetriever[BaseTool], tool_retriever) self._get_tools = lambda message: tool_retriever_c.retrieve(message) else: self._get_tools = lambda _: [] @classmethod def from_tools( cls, tools: Optional[Sequence[BaseTool]] = None, tool_retriever: Optional[ObjectRetriever[BaseTool]] = None, llm: Optional[LLM] = None, max_iterations: int = 10, react_chat_formatter: Optional[ReActChatFormatter] = None, output_parser: Optional[ReActOutputParser] = None, callback_manager: Optional[CallbackManager] = None, verbose: bool = False, **kwargs: Any, ) -> "ReActAgentWorker": """Convenience constructor method from set of of BaseTools (Optional). NOTE: kwargs should have been exhausted by this point. In other words the various upstream components such as BaseSynthesizer (response synthesizer) or BaseRetriever should have picked up off their respective kwargs in their constructions. Returns: ReActAgent """ llm = llm or OpenAI(model=DEFAULT_MODEL_NAME) if callback_manager is not None: llm.callback_manager = callback_manager return cls( tools=tools or [], tool_retriever=tool_retriever, llm=llm, max_iterations=max_iterations, react_chat_formatter=react_chat_formatter, output_parser=output_parser, callback_manager=callback_manager, verbose=verbose, ) def _get_prompts(self) -> PromptDictType: """Get prompts.""" # TODO: the ReAct formatter does not explicitly specify PromptTemplate # objects, but wrap it in this to obey the interface sys_header = self._react_chat_formatter.system_header return {"system_prompt": PromptTemplate(sys_header)} def _update_prompts(self, prompts: PromptDictType) -> None: """Update prompts.""" if "system_prompt" in prompts: sys_prompt = cast(PromptTemplate, prompts["system_prompt"]) self._react_chat_formatter.system_header = sys_prompt.template def initialize_step(self, task: Task, **kwargs: Any) -> TaskStep: """Initialize step from task.""" sources: List[ToolOutput] = [] current_reasoning: List[BaseReasoningStep] = [] # temporary memory for new messages new_memory = ChatMemoryBuffer.from_defaults() # initialize task state task_state = { "sources": sources, "current_reasoning": current_reasoning, "new_memory": new_memory, } task.extra_state.update(task_state) return TaskStep( task_id=task.task_id, step_id=str(uuid.uuid4()), input=task.input, step_state={"is_first": True}, ) def get_tools(self, input: str) -> List[AsyncBaseTool]: """Get tools.""" return [adapt_to_async_tool(t) for t in self._get_tools(input)] def _extract_reasoning_step( self, output: ChatResponse, is_streaming: bool = False ) -> Tuple[str, List[BaseReasoningStep], bool]: """ Extracts the reasoning step from the given output. This method parses the message content from the output, extracts the reasoning step, and determines whether the processing is complete. It also performs validation checks on the output and handles possible errors. """ if output.message.content is None: raise ValueError("Got empty message.") message_content = output.message.content current_reasoning = [] try: reasoning_step = self._output_parser.parse(message_content, is_streaming) except BaseException as exc: raise ValueError(f"Could not parse output: {message_content}") from exc if self._verbose: print_text(f"{reasoning_step.get_content()}\n", color="pink") current_reasoning.append(reasoning_step) if reasoning_step.is_done: return message_content, current_reasoning, True reasoning_step = cast(ActionReasoningStep, reasoning_step) if not isinstance(reasoning_step, ActionReasoningStep): raise ValueError(f"Expected ActionReasoningStep, got {reasoning_step}") return message_content, current_reasoning, False def _process_actions( self, task: Task, tools: Sequence[AsyncBaseTool], output: ChatResponse, is_streaming: bool = False, ) -> Tuple[List[BaseReasoningStep], bool]: tools_dict: Dict[str, AsyncBaseTool] = { tool.metadata.get_name(): tool for tool in tools } _, current_reasoning, is_done = self._extract_reasoning_step( output, is_streaming ) if is_done: return current_reasoning, True # call tool with input reasoning_step = cast(ActionReasoningStep, current_reasoning[-1]) tool = tools_dict[reasoning_step.action] with self.callback_manager.event( CBEventType.FUNCTION_CALL, payload={ EventPayload.FUNCTION_CALL: reasoning_step.action_input, EventPayload.TOOL: tool.metadata, }, ) as event: tool_output = tool.call(**reasoning_step.action_input) event.on_end(payload={EventPayload.FUNCTION_OUTPUT: str(tool_output)}) task.extra_state["sources"].append(tool_output) observation_step = ObservationReasoningStep(observation=str(tool_output)) current_reasoning.append(observation_step) if self._verbose: print_text(f"{observation_step.get_content()}\n", color="blue") return current_reasoning, False async def _aprocess_actions( self, task: Task, tools: Sequence[AsyncBaseTool], output: ChatResponse, is_streaming: bool = False, ) -> Tuple[List[BaseReasoningStep], bool]: tools_dict = {tool.metadata.name: tool for tool in tools} _, current_reasoning, is_done = self._extract_reasoning_step( output, is_streaming ) if is_done: return current_reasoning, True # call tool with input reasoning_step = cast(ActionReasoningStep, current_reasoning[-1]) tool = tools_dict[reasoning_step.action] with self.callback_manager.event( CBEventType.FUNCTION_CALL, payload={ EventPayload.FUNCTION_CALL: reasoning_step.action_input, EventPayload.TOOL: tool.metadata, }, ) as event: tool_output = await tool.acall(**reasoning_step.action_input) event.on_end(payload={EventPayload.FUNCTION_OUTPUT: str(tool_output)}) task.extra_state["sources"].append(tool_output) observation_step = ObservationReasoningStep(observation=str(tool_output)) current_reasoning.append(observation_step) if self._verbose: print_text(f"{observation_step.get_content()}\n", color="blue") return current_reasoning, False def _get_response( self, current_reasoning: List[BaseReasoningStep], sources: List[ToolOutput], ) -> AgentChatResponse: """Get response from reasoning steps.""" if len(current_reasoning) == 0: raise ValueError("No reasoning steps were taken.") elif len(current_reasoning) == self._max_iterations: raise ValueError("Reached max iterations.") if isinstance(current_reasoning[-1], ResponseReasoningStep): response_step = cast(ResponseReasoningStep, current_reasoning[-1]) response_str = response_step.response else: response_str = current_reasoning[-1].get_content() # TODO: add sources from reasoning steps return AgentChatResponse(response=response_str, sources=sources) def _get_task_step_response( self, agent_response: AGENT_CHAT_RESPONSE_TYPE, step: TaskStep, is_done: bool ) -> TaskStepOutput: """Get task step response.""" if is_done: new_steps = [] else: new_steps = [ step.get_next_step( step_id=str(uuid.uuid4()), # NOTE: input is unused input=None, ) ] return TaskStepOutput( output=agent_response, task_step=step, is_last=is_done, next_steps=new_steps, ) def _infer_stream_chunk_is_final(self, chunk: ChatResponse) -> bool: """Infers if a chunk from a live stream is the start of the final reasoning step. (i.e., and should eventually become ResponseReasoningStep — not part of this function's logic tho.). Args: chunk (ChatResponse): the current chunk stream to check Returns: bool: Boolean on whether the chunk is the start of the final response """ latest_content = chunk.message.content if latest_content: if not latest_content.startswith( "Thought" ): # doesn't follow thought-action format return True else: if "Answer: " in latest_content: return True return False def _add_back_chunk_to_stream( self, chunk: ChatResponse, chat_stream: Generator[ChatResponse, None, None] ) -> Generator[ChatResponse, None, None]: """Helper method for adding back initial chunk stream of final response back to the rest of the chat_stream. Args: chunk (ChatResponse): the chunk to add back to the beginning of the chat_stream. Return: Generator[ChatResponse, None, None]: the updated chat_stream """ updated_stream = chain.from_iterable( # need to add back partial response chunk [ unit_generator(chunk), chat_stream, ] ) # use cast to avoid mypy issue with chain and Generator updated_stream_c: Generator[ChatResponse, None, None] = cast( Generator[ChatResponse, None, None], updated_stream ) return updated_stream_c async def _async_add_back_chunk_to_stream( self, chunk: ChatResponse, chat_stream: AsyncGenerator[ChatResponse, None] ) -> AsyncGenerator[ChatResponse, None]: """Helper method for adding back initial chunk stream of final response back to the rest of the chat_stream. NOTE: this itself is not an async function. Args: chunk (ChatResponse): the chunk to add back to the beginning of the chat_stream. Return: AsyncGenerator[ChatResponse, None]: the updated async chat_stream """ yield chunk async for item in chat_stream: yield item def _run_step( self, step: TaskStep, task: Task, ) -> TaskStepOutput: """Run step.""" if step.input is not None: add_user_step_to_reasoning( step, task.extra_state["new_memory"], task.extra_state["current_reasoning"], verbose=self._verbose, ) # TODO: see if we want to do step-based inputs tools = self.get_tools(task.input) input_chat = self._react_chat_formatter.format( tools, chat_history=task.memory.get() + task.extra_state["new_memory"].get_all(), current_reasoning=task.extra_state["current_reasoning"], ) # send prompt chat_response = self._llm.chat(input_chat) # given react prompt outputs, call tools or return response reasoning_steps, is_done = self._process_actions( task, tools, output=chat_response ) task.extra_state["current_reasoning"].extend(reasoning_steps) agent_response = self._get_response( task.extra_state["current_reasoning"], task.extra_state["sources"] ) if is_done: task.extra_state["new_memory"].put( ChatMessage(content=agent_response.response, role=MessageRole.ASSISTANT) ) return self._get_task_step_response(agent_response, step, is_done) async def _arun_step( self, step: TaskStep, task: Task, ) -> TaskStepOutput: """Run step.""" if step.input is not None: add_user_step_to_reasoning( step, task.extra_state["new_memory"], task.extra_state["current_reasoning"], verbose=self._verbose, ) # TODO: see if we want to do step-based inputs tools = self.get_tools(task.input) input_chat = self._react_chat_formatter.format( tools, chat_history=task.memory.get() + task.extra_state["new_memory"].get_all(), current_reasoning=task.extra_state["current_reasoning"], ) # send prompt chat_response = await self._llm.achat(input_chat) # given react prompt outputs, call tools or return response reasoning_steps, is_done = await self._aprocess_actions( task, tools, output=chat_response ) task.extra_state["current_reasoning"].extend(reasoning_steps) agent_response = self._get_response( task.extra_state["current_reasoning"], task.extra_state["sources"] ) if is_done: task.extra_state["new_memory"].put( ChatMessage(content=agent_response.response, role=MessageRole.ASSISTANT) ) return self._get_task_step_response(agent_response, step, is_done) def _run_step_stream( self, step: TaskStep, task: Task, ) -> TaskStepOutput: """Run step.""" if step.input is not None: add_user_step_to_reasoning( step, task.extra_state["new_memory"], task.extra_state["current_reasoning"], verbose=self._verbose, ) # TODO: see if we want to do step-based inputs tools = self.get_tools(task.input) input_chat = self._react_chat_formatter.format( tools, chat_history=task.memory.get() + task.extra_state["new_memory"].get_all(), current_reasoning=task.extra_state["current_reasoning"], ) chat_stream = self._llm.stream_chat(input_chat) # iterate over stream, break out if is final answer after the "Answer: " full_response = ChatResponse( message=ChatMessage(content=None, role="assistant") ) is_done = False for latest_chunk in chat_stream: full_response = latest_chunk is_done = self._infer_stream_chunk_is_final(latest_chunk) if is_done: break if not is_done: # given react prompt outputs, call tools or return response reasoning_steps, _ = self._process_actions( task, tools=tools, output=full_response, is_streaming=True ) task.extra_state["current_reasoning"].extend(reasoning_steps) # use _get_response to return intermediate response agent_response: AGENT_CHAT_RESPONSE_TYPE = self._get_response( task.extra_state["current_reasoning"], task.extra_state["sources"] ) else: # Get the response in a separate thread so we can yield the response response_stream = self._add_back_chunk_to_stream( chunk=latest_chunk, chat_stream=chat_stream ) agent_response = StreamingAgentChatResponse( chat_stream=response_stream, sources=task.extra_state["sources"], ) thread = Thread( target=agent_response.write_response_to_history, args=(task.extra_state["new_memory"],), ) thread.start() return self._get_task_step_response(agent_response, step, is_done) async def _arun_step_stream( self, step: TaskStep, task: Task, ) -> TaskStepOutput: """Run step.""" if step.input is not None: add_user_step_to_reasoning( step, task.extra_state["new_memory"], task.extra_state["current_reasoning"], verbose=self._verbose, ) # TODO: see if we want to do step-based inputs tools = self.get_tools(task.input) input_chat = self._react_chat_formatter.format( tools, chat_history=task.memory.get() + task.extra_state["new_memory"].get_all(), current_reasoning=task.extra_state["current_reasoning"], ) chat_stream = await self._llm.astream_chat(input_chat) # iterate over stream, break out if is final answer after the "Answer: " full_response = ChatResponse( message=ChatMessage(content=None, role="assistant") ) is_done = False async for latest_chunk in chat_stream: full_response = latest_chunk is_done = self._infer_stream_chunk_is_final(latest_chunk) if is_done: break if not is_done: # given react prompt outputs, call tools or return response reasoning_steps, _ = self._process_actions( task, tools=tools, output=full_response, is_streaming=True ) task.extra_state["current_reasoning"].extend(reasoning_steps) # use _get_response to return intermediate response agent_response: AGENT_CHAT_RESPONSE_TYPE = self._get_response( task.extra_state["current_reasoning"], task.extra_state["sources"] ) else: # Get the response in a separate thread so we can yield the response response_stream = self._async_add_back_chunk_to_stream( chunk=latest_chunk, chat_stream=chat_stream ) agent_response = StreamingAgentChatResponse( achat_stream=response_stream, sources=task.extra_state["sources"], ) # create task to write chat response to history asyncio.create_task( agent_response.awrite_response_to_history( task.extra_state["new_memory"] ) ) # wait until response writing is done await agent_response._is_function_false_event.wait() return self._get_task_step_response(agent_response, step, is_done) @trace_method("run_step") def run_step(self, step: TaskStep, task: Task, **kwargs: Any) -> TaskStepOutput: """Run step.""" return self._run_step(step, task) @trace_method("run_step") async def arun_step( self, step: TaskStep, task: Task, **kwargs: Any ) -> TaskStepOutput: """Run step (async).""" return await self._arun_step(step, task) @trace_method("run_step") def stream_step(self, step: TaskStep, task: Task, **kwargs: Any) -> TaskStepOutput: """Run step (stream).""" # TODO: figure out if we need a different type for TaskStepOutput return self._run_step_stream(step, task) @trace_method("run_step") async def astream_step( self, step: TaskStep, task: Task, **kwargs: Any ) -> TaskStepOutput: """Run step (async stream).""" return await self._arun_step_stream(step, task) def finalize_task(self, task: Task, **kwargs: Any) -> None: """Finalize task, after all the steps are completed.""" # add new messages to memory task.memory.set(task.memory.get() + task.extra_state["new_memory"].get_all()) # reset new memory task.extra_state["new_memory"].reset() def set_callback_manager(self, callback_manager: CallbackManager) -> None: """Set callback manager.""" # TODO: make this abstractmethod (right now will break some agent impls) self.callback_manager = callback_manager