from typing import Any, List from llama_index.bridge.pydantic import PrivateAttr from llama_index.embeddings.base import BaseEmbedding class ElasticsearchEmbedding(BaseEmbedding): """Elasticsearch embedding models. This class provides an interface to generate embeddings using a model deployed in an Elasticsearch cluster. It requires an Elasticsearch connection object and the model_id of the model deployed in the cluster. In Elasticsearch you need to have an embedding model loaded and deployed. - https://www.elastic.co /guide/en/elasticsearch/reference/current/infer-trained-model.html - https://www.elastic.co /guide/en/machine-learning/current/ml-nlp-deploy-models.html """ # _client: Any = PrivateAttr() model_id: str input_field: str @classmethod def class_name(self) -> str: return "ElasticsearchEmbedding" def __init__( self, client: Any, model_id: str, input_field: str = "text_field", **kwargs: Any, ): self._client = client super().__init__(model_id=model_id, input_field=input_field, **kwargs) @classmethod def from_es_connection( cls, model_id: str, es_connection: Any, input_field: str = "text_field", ) -> BaseEmbedding: """ Instantiate embeddings from an existing Elasticsearch connection. This method provides a way to create an instance of the ElasticsearchEmbedding class using an existing Elasticsearch connection. The connection object is used to create an MlClient, which is then used to initialize the ElasticsearchEmbedding instance. Args: model_id (str): The model_id of the model deployed in the Elasticsearch cluster. es_connection (elasticsearch.Elasticsearch): An existing Elasticsearch connection object. input_field (str, optional): The name of the key for the input text field in the document. Defaults to 'text_field'. Returns: ElasticsearchEmbedding: An instance of the ElasticsearchEmbedding class. Example: .. code-block:: python from elasticsearch import Elasticsearch from llama_index.embeddings import ElasticsearchEmbedding # Define the model ID and input field name (if different from default) model_id = "your_model_id" # Optional, only if different from 'text_field' input_field = "your_input_field" # Create Elasticsearch connection es_connection = Elasticsearch(hosts=["localhost:9200"], basic_auth=("user", "password")) # Instantiate ElasticsearchEmbedding using the existing connection embeddings = ElasticsearchEmbedding.from_es_connection( model_id, es_connection, input_field=input_field, ) """ try: from elasticsearch.client import MlClient except ImportError: raise ImportError( "elasticsearch package not found, install with" "'pip install elasticsearch'" ) client = MlClient(es_connection) return cls(client, model_id, input_field=input_field) @classmethod def from_credentials( cls, model_id: str, es_url: str, es_username: str, es_password: str, input_field: str = "text_field", ) -> BaseEmbedding: """Instantiate embeddings from Elasticsearch credentials. Args: model_id (str): The model_id of the model deployed in the Elasticsearch cluster. input_field (str): The name of the key for the input text field in the document. Defaults to 'text_field'. es_url: (str): The Elasticsearch url to connect to. es_username: (str): Elasticsearch username. es_password: (str): Elasticsearch password. Example: .. code-block:: python from llama_index.embeddings import ElasticsearchEmbedding # Define the model ID and input field name (if different from default) model_id = "your_model_id" # Optional, only if different from 'text_field' input_field = "your_input_field" embeddings = ElasticsearchEmbedding.from_credentials( model_id, input_field=input_field, es_url="foo", es_username="bar", es_password="baz", ) """ try: from elasticsearch import Elasticsearch from elasticsearch.client import MlClient except ImportError: raise ImportError( "elasticsearch package not found, install with" "'pip install elasticsearch'" ) es_connection = Elasticsearch( hosts=[es_url], basic_auth=(es_username, es_password), ) client = MlClient(es_connection) return cls(client, model_id, input_field=input_field) def _get_embedding(self, text: str) -> List[float]: """ Generate an embedding for a single query text. Args: text (str): The query text to generate an embedding for. Returns: List[float]: The embedding for the input query text. """ response = self._client.infer_trained_model( model_id=self.model_id, docs=[{self.input_field: text}], ) return response["inference_results"][0]["predicted_value"] def _get_text_embedding(self, text: str) -> List[float]: return self._get_embedding(text) def _get_query_embedding(self, query: str) -> List[float]: return self._get_embedding(query) async def _aget_query_embedding(self, query: str) -> List[float]: return self._get_query_embedding(query) ElasticsearchEmbeddings = ElasticsearchEmbedding