from typing import Any, Dict, Optional from llama_index.bridge.pydantic import Field from llama_index.constants import ( DEFAULT_NUM_OUTPUTS, DEFAULT_TEMPERATURE, ) from llama_index.core.llms.types import LLMMetadata from llama_index.llms.generic_utils import get_from_param_or_env from llama_index.llms.openai_like import OpenAILike DEFAULT_API_BASE = "https://router.neutrinoapp.com/api/llm-router" DEFAULT_ROUTER = "default" MAX_CONTEXT_WINDOW = 200000 class Neutrino(OpenAILike): model: str = Field( description="The Neutrino router to use. See https://docs.neutrinoapp.com/router for details." ) context_window: int = Field( default=MAX_CONTEXT_WINDOW, description="The maximum number of context tokens for the model. Defaults to the largest supported model (Claude).", gt=0, ) is_chat_model: bool = Field( default=True, description=LLMMetadata.__fields__["is_chat_model"].field_info.description, ) def __init__( self, model: Optional[str] = None, router: str = DEFAULT_ROUTER, temperature: float = DEFAULT_TEMPERATURE, max_tokens: int = DEFAULT_NUM_OUTPUTS, additional_kwargs: Optional[Dict[str, Any]] = None, max_retries: int = 5, api_base: Optional[str] = DEFAULT_API_BASE, api_key: Optional[str] = None, **kwargs: Any, ) -> None: additional_kwargs = additional_kwargs or {} api_base = get_from_param_or_env("api_base", api_base, "NEUTRINO_API_BASE") api_key = get_from_param_or_env("api_key", api_key, "NEUTRINO_API_KEY") model = model or router super().__init__( model=model, temperature=temperature, max_tokens=max_tokens, api_base=api_base, api_key=api_key, additional_kwargs=additional_kwargs, max_retries=max_retries, **kwargs, ) @classmethod def class_name(cls) -> str: return "Neutrino_LLM"